Potential and cumulative accessibility of workplaces by public transport in Szczecin
DOI:
https://doi.org/10.2478/bog-2020-0037Keywords
potential accessibility, cumulative accessibility, public transport, GTFS, SzczecinAbstract
The article presents the accessibility of workplaces in Szczecin using the method of potential and cumulative accessibility for commuting by public transport. The public transport commuting times used in the study were generated using the public transport model, which was developed based on data in the General Transit Feed Specification (GTFS) format. The results of potential accessibility by public transport were calculated for several selected time thresholds in the morning rush hours between 7 a.m. and 9 a.m.. On the other hand, cumulative accessibility is characterised by variability of travel times for 8 a.m., which is calculated in 10- to 60-minute intervals of travel time. The aim of this study is to identify workplaces in Szczecin that are situated in areas where accessibility is more dependent on the parameters of the public-transport timetable. In addition, a possibility to define the optimal journey length was assumed so that it would regard the largest number of jobs. The use of the two indicated research methods for the accessibility of workplaces in Szczecin provides a result in the form of better- and less-accessible areas of the city as regards the labour market. The results regarding the accessibility of workplaces using the two methods identify places of increased demand for commuting by public transport during the morning rush hours.References
Allen, J. Farber, S. (2019). Sizing up transport poverty: A national scale accounting of low-income households suffering from inaccessibility in Canada, and what to do about it, Transport Policy. 74: 214-223. DOI: https://doi.org/10.1016/j.tranpol.2018.11.018
Allen, J. (2019). Mapping differences in access to public libraries by travel mode and time of day, Library and Information Science Research. 41: 11-18. DOI: https://doi.org/10.1016/j.lisr.2019.02.001
Ben-Akiva, M. Lerman, S.R., (1979). Disaggregate travel and mobility-choice models and measures of accessibility in Behavioral Travel Modelling, D.A. Hensher and P.R. Storper, Editors, London: Croom-Helm.
Beria, P. Debernardi, A. Ferrara, E. (2017). Measuring the long-distance accessibility of Italian cities, Journal of Transport Geography, 62: 66-79. DOI: https://doi.org/10.1016/j.jtrangeo.2017.05.006
Boussauw, K. Derudder, B. Witlox, F. (2011). Measuring spatial separation process through the minimum commute: the case of Flanders, European Journal of Transport and Infrastructure Research, 11(1): 42–60.
Centralny Urząd Statystyczny, Baza REGON w Szczecinie. Available at: https://szczecin.stat.gov.pl/co-gdzie-jak-zalatwic/regon/ (01.07.2020)
Coffey, W. (1978). Income Relationships in Boston and Toronto: A Tale for Two Countries?, Canadian Geographer, 2(22): 112–129.
Kompleksowe Badania Ruchu w Szczecinie 2016. Availabe at: http://bip.um.szczecin.pl/chapter_1112-4.asp?soid=2C19A077C8BE419985E3622664C0AA8D (30.06.2020)
Delling, D. Pajor, T. Werneck, R.F. (2015). Round-based public transit routing. Transportation Science, 49(3): 591–604. DOI: https://doi.org/10.1287/trsc.2014.0534
El-Geneidy, A. Levinson, D. (2007). Mapping Accessibility Over Time. Journal of Maps, 3(1): 76-87. DOI: https://doi.org/10.1080/jom.2007.9710829
El-Geneidy, A. Levinson, D. Diab, E. Boisjoly, G. Verbich, D. Loong, Ch. (2016). The cost of equity: Assessing transit accessibility and social disparity using total travel cost, Transportation Research Part A: Policy and Practise. 91: 302-316. DOI: https://doi.org/10.1016/j.tra.2016.07.003
Farber, S. Morang, M.Z. Widener M.J. (2014). Temporal variability in transit-based accessibility to supermarkets, Applied Geography, 53: 149–159. DOI: https://doi.org/10.1016/j.apgeog.2014.06.012
Farber, S. Benjamin, R. Liwei, F. (2016). Space–time mismatch between transit service and observed travel patterns in the Wasatch Front, Utah: A social equity perspective, Travel Behaviour and Society, 4: 40–48. DOI: https://doi.org/10.1016/j.tbs.2016.01.001
Fransen, K. Neutens, T. Farber, S. De Maeyer, P. Deruyter, G. Witlox, F., (2015). Identifying public transport gaps using time-dependent accessibility levels, Journal of Transport Geography, 48: 176–187. DOI: https://doi.org/10.1016/j.jtrangeo.2015.09.008
Geurs, K.T., Ritsema Van Eck, J.R., (2001). Accessibility measures: review and applications. RIVM report 408505. Bilthoven: National Institute of Public Health and the Environment.
Geurs, K.T., Van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: Review and research directions, Journal of Transport Geography, 12(2): 127– 140. DOI: https://doi.org/10.1016/j.jtrangeo.2003.10.005
Geurs, K.T. Ritsema Van Eck, J. (2003). Evaluation of accessibility impacts of land-use scenarios: The implications of job competition, land-use, and infrastructure developments for the Netherlands, Environment and Planning B: Planning and Design, 30: 69-87. DOI: https://doi.org/10.1068%2Fb12940
Goliszek, S., Połom, M. (2016). The use of general transit feed specification (GTFS) application to identify deviations in the operation of public transport at morning rush hour on the example of Szczecin, Europa XXI, 31: 51-60. DOI: http://dx.doi.org/10.7163/Eu21.2016.31.4
Goliszek, S. (2017). Space-time variation of accessibility to jobs by public transport - a case study of Szczecin, Europa XXI, 33: 49-66. DOI: http://doi.org/10.7163/Eu21.2017.33.4
Goliszek, S. (2019). Time deviations in the operation of public transport providing access to selected services in the city of Szczecin. Prace Komisji Geografii Komunikacji PTG, 22(1): 22-30. DOI: http://dx.doi.org/10.4467/2543859XPKG.19.004.10924
GTFS Open data Szczecin. Available at: https://www.zditm.szczecin.pl/rozklady/GTFS/latest/
Gutierrez, J., (2001). Location, economic potential and daily accessibility: an analysis of the accessibility impact of the high-speed line Madrid-Barcelon-French border, Journal of Transport Geography, 9: 229-242. DOI: https://doi.org/10.1016/S0966-6923(01)00017-5
Hadas, Y., (2013). Assessing public transport systems connectivity based on Google Transit data, Journal of Transport Geography, 33: 105–116. DOI: https://doi.org/10.1016/j.jtrangeo.2013.09.015
Hansen, W.G., (1959). How accessibility shapes land-use, Journal of American Institute of Planners, 25: 73-76.
Harris, C.D. (1954). The market as a factor in the localization of industry in the United States, Annals of the Association of American Geographers, 44: 315-348.
Karner, A. (2018). Assessing public transit service equity using route-level accessibility measures and public data, Journal of Transport Geography, 67: 24–32. DOI: https://doi.org/10.1016/j.jtrangeo.2018.01.005
Kim, S. (1995). Excess commuting for two-worker households in the Los Angeles metropolitan areas, Journal of Urban Economics, 38(2): 166–182.
Lei, T. Von u Thakuriah, P. (2012). Ridership effects of real-time bus information system: A case study in the City of Chicago, Transportation Research Part C: Emerging Technologies, 22: 146–161. DOI: https://doi.org/10.1016/j.trc.2012.01.001
Loo, B. Chow, A. (2011). Jobs-housing balance in an era of population decentralization: an analytical framework and a case study, Journal of Transport Geography, 19(4): 552–562. DOI: https://doi.org/10.1016/j.jtrangeo.2010.06.004
Martínez-Jiménez, E. Salinas-Pérez, J.A. (2019). Accessibility to culture and education. Educative city of Córdoba (Spain), Journal of Maps, 15(1): 39-45. DOI: https://doi.org/10.1080/17445647.2019.1575776
Merchant, D.K. Nemhauser, G.L. (1978). A model and an algorithm for the dynamic traffic assignment problems, Transportation Science, 12(3): 183–199.
Miller, H.J. (2005). Place-Based Versus People-Based Accessibility, Levinson, D.M. Krizek, K.J. (Ed.) Access to Destinations, London: Emerald Group Publishing Limited. DOI: https://doi.org/10.1108/9780080460550-004
Neutens, T. (2015). Accessibility, equity and health care: review and research directions for transport geographers, Journal of Transport Geography, 43: 14–27. DOI: https://doi.org/10.1016/j.jtrangeo.2014.12.006
Niedzielski, M.A. Boschmann, E.E. (2014). Travel time and distance as relative accessibility in the journey to work, Annals of the Association of American Geographers, 104(6): 1156-1182. DOI: https://doi.org/10.1080/00045608.2014.958398
O’Kelly, M.E. Lee, W. (2005). Disaggregate journey-to-work data: implications for excess commuting and jobs-housing balance, Environment and Planning A, 37(12): 2233–2252. DOI: https://doi.org/10.1068%2Fa37312
O’Kelly, M.E.,. Niedzielski, M.A., Gleeson, J. (2012). Spatial Interaction Models from Irish Commuting Data: Variations in Trip Length by Occupation and Gender, Journal of Geographical Systems, 14(4): 357-387. DOI: https://doi.org/10.1007/s10109-011-0159-3
O’Kelly, M.E., Niedzielski, M.A., (2008). Efficient spatial interaction: attainable reductions in metropolitan average trip length, Journal of Transport Geography, 16(5): 313-323. DOI: https://doi.org/10.1016/j.jtrangeo.2007.11.003
Owen, A. Levinson, D. (2015). Modeling the commute mode share of transit using continuous accessibility to jobs, Transportation Research Part A: Policy and Practice, 74: 110-122. DOI: https://doi.org/10.1016/j.tra.2015.02.002
Poelman, H. Dijkstra, L. (2015). Measuring access to public transport in European cities, Regional and Urban Policy, Regional Working Paper.
Rosik, P. Pomianowski, W. Komornicki, T. Goliszek, S. Szejgiec-Kolenda, B. Duma P. (2020). Regional dispersion of potential accessibility quotient at the intra-European and intranational level. Core-periphery pattern, discontinuity belts and distance decay tornado effect, Journal of Transport Geography, 8215 s. https://doi.org/10.1016/j.jtrangeo.2019.102554
Salonen, M. Toivonen, T. (2013). Modelling travel time in urban networks: Comparable measures for private car and public transport, Journal of Transport Geography, 31: 143-153. DOI: https://doi.org/10.1016/j.jtrangeo.2013.06.011
Shen, Q. (1998). Location characteristics of inner-city neighborhoods and employment accessibility of low-wage workers, Environment and Planning B : Urban Analytics and City Science, 25: 345-365. DOI: https://doi.org/10.1068%2Fb250345
Stępniak, M. Goliszek, S. (2017). Spatio-temporal variation of accessibility by public transport - the equity perspective, Ed. Ivan, I. Singleton, A. Horák, J. Inspektor, T., The rise of big spatial data, Cham: Springer International Publishing.
Stępniak, M. Pritchard, J. Geurs, K. Goliszek, S. (2019). The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland, Journal of Transport Geography, 75(2): 8-24. DOI: https://doi.org/10.1016/j.jtrangeo.2019.01.007
Talen, E. L. Anselin, L. (1998). Assessing spatial equity: an evaluation of measures of accessibility to public playgrounds, Environment and Planning A, 30: 595-313. DOI: https://doi.org/10.1068%2Fa300595
Talen, E. (1996). After the plans: Methods to evaluate the implementation success of plans, Journal of Planning Education and Research, 16(2): 79-91. DOI: https://doi.org/10.1177%2F0739456X9601600201
Ting, L.L. Church, R.L. (2010). Mapping transit-based access: integrating GIS, routes and schedules, International Journal of Geographical Information Science, 24(2): 283–304. DOI: https://doi.org/10.1080/13658810902835404
Toole, J.L. Colak, S. Sturt, B. Alexander, L.P. Evsukoff, A. Gonzalez, M.C. (2015). The path most travelled: Travel demand estimation using big data resources, Transportation Research Part C: Emerging Technologies, 58: 162-177. DOI: https://doi.org/10.1016/j.trc.2015.04.022
Vickerman, R. Spiekermann, K. Wegener, M. (1999). Accessibility and Economic Development in Europe, Regional Studies, 1(33): 1–15. DOI: https://doi.org/10.1080/00343409950118878
Vickerman, R.W. (1974). Accessibility, attraction and potential: A review of some concepts and their use in determining mobility, Environment and Planning A, 6: 675-691. DOI: https://doi.org/10.1068%2Fa060675
Wang, C.-H. Chen, N. (2015). A GIS-based spatial statistical approach to modeling job accessibility by transportation mode: case study of Columbus, Ohio, Journal of Transport Geography, 45: 1-11. DOI: https://doi.org/10.1016/j.jtrangeo.2015.03.015
Wessel, N. Widener, M. (2017). Discovering the space–time dimensions of schedule padding and delay from GTFS and real-time transit data, Journal of Geographical Systems, 19: 93-107. https://link.springer.com/article/10.1007/s10109-016-0244-8
Wessel, N. Allen, J. Farber, S. (2017). Constructing a Routable Retrospective Transit Timetable from a Real-time Vehicle Location Feed and GTFS, Journal of Transport Geography, 62: 92–97. DOI: https://doi.org/10.1016/j.jtrangeo.2017.04.012
Widener, M. Minaker, L. Farber, S. Allen, J. Vitali, B. Coleman, P.C. Cook, B. (2017). How do changes in the daily food and transportation environments affect grocery store accessibility?, Applied geography, 83: 46–62. DOI: https://doi.org/10.1016
/j.apgeog.2017.03.018
Wilson, A.G. (1971). A family of spatial interaction models, and associated developments, Environment and Planning A, 3(1): 1-32. DOI: https://doi.org/10.1068%2Fa030001
Yongling, Y. Guonan, Z. (2009). Empirical analysis of spatial mismatch of living-working: based on a field survey in downtown Beijing, International Journal of Urban Sciences, 13(1): 1-17. DOI: https://doi.org/10.1080/12265934.2009.9693643
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Bulletin of Geography. Socio-economic Series
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Title, logo and layout of journal Bulletin of Geography. Socio-economic Series are reserved trademarks of Bulletin of Geography. Socio-economic Series.Stats
Number of views and downloads: 648
Number of citations: 6