Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Editorial Board
    • List of Reviewers
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Acta Universitatis Nicolai Copernici. Management

FORECASTING VIA WAVELET SMOOTHING
  • Home
  • /
  • FORECASTING VIA WAVELET SMOOTHING
  1. Home /
  2. Archives /
  3. Vol. 39 (2012) /
  4. Articles

FORECASTING VIA WAVELET SMOOTHING

Authors

  • Joanna Bruzda

DOI:

https://doi.org/10.12775/AUNC_ZARZ.2012.006

Keywords

wavelet forecasting, nonparametric signal estimation, wavelet smoothing

Abstract

In the paper we discuss existing techniques for univariate time series forecasting based on the wavelet transform and introduce also a new method of forecasting with wavelets. The new approach is based on a nonparametric estimation of a stochastic signal via a wavelet smoothing. The method can be thought of as a wavelet variant of the exponential smoothing, which is, however, much more universal, being at the same time relatively computationally efficient. Our empirical verification based on 17 time series from the M3-JIF-Competition database provides very promising results, confirming the practical relevance of the suggested approach.

References

Alrumaih R. M., Al-Fawzan M. A. (2002), Time Series Forecasting Using Wavelet Denoising, Journal of King Saudi University, Engineering Sciences, 14, 221–234.

Arino M. (1995), Time Series Forecasts via Wavelets: An Application to Car Sales in the Spanish Market, Discussion Paper No. 95–30, Institute of Statistics and Decision Sciences, Duke University.

Augustyniak P. (2003), Transformacje falkowe w zastosowaniach elektrodiagnostycznych, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, AGH, Kraków.

Bruzda J. (2011), Wavelet Analysis in Economic Applications, monografia w przygotowaniu. Chen H., Vidacovic B., Mavris D. (2004), Multiscale Forecasting Method using AR MAX Models, Biomedical Engineering Technical Report No. 30/2004, Georgia Institute of Technology.

Conejo A. J., Plazas M. A., Espínola R., Molina A. B. (2005), Day-Ahead Electricity Price Forecasting Using the Wavelet Transform and ARI MA Models, IEEE Transactions on Power Systems, 20, 1035–1042. DOI: http://dx.doi.org/10.1109/TPWRS.2005.846054

Ferbar L., Čreslovnik D., Mojškerc B., Rajgelj M. (2009), Demand Forecasting Methods in a Supply Chain: Smoothing and Denoising, International Journal of Production Economics, 118, 49–54. DOI: http://dx.doi.org/10.1016/j.ijpe.2008.08.042

Fernandez V. (2008), Traditional versus Novel Forecasting Techniques: How Much do We Gain?, Journal of Forecasting, 27, 637–648. DOI: http://dx.doi.org/10.1002/for.1066

Fryźlewicz P., Van Bellegem S., von Sachs R. (2003), Forecasting Nonstationary Time Series by Wavelet Process Modelling, Annals of the Institute of Statistical Mathematics, 55, 737–764.

Kaboudan M. (2005), Extended Daily Exchange Rates Forecasts Using Wavelet Temporal Resolution, New Mathematics and Natural Computation, 1, 79–107. DOI: http://dx.doi.org/10.1142/S1793005705000056

Makridakis S., Hibon M. (2000), The M3-Competition: Results, Conclusions and Implications, International Journal of Forecasting, 16, 451–476. DOI: http://dx.doi.org/10.1016/S0169-2070(00)00057-1

Minu K. K., Lineesh M. C., Jessy John C. (2010), Wavelet Neural Networks for Nonlinear Time Series Analysis, Applied Mathematical Sciences, 4, 2485–2495.

Nason G. P. (2008), Wavelet Methods in Statistics with R, Springer-Business Media, New York. DOI: http://dx.doi.org/10.1007/978-0-387-75961-6

Percival D. B., Walden A. T. (2000), Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge.

Renaud O., Starck J.-L., Murtagh F. (2002), Wavelet-based Forecasting of Short and Long Memory Time Series, Working Paper No. 2002.04, University of Geneva.

Schlüter S., Deuschle C. (2010), Using Wavelets for Time Series Forecasting – Does it Pay Off?, Diskussionspapier No. 4/2010, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung, Friedrich-Alexander-Universität.

Wong H., Ip W.-C., Xie Z., Lui X. (2003), Modelling and Forecasting by Wavelets, and the Application to Exchange Rates, Journal of Applied Statistics, 30, 537v553. DOI: http://dx.doi.org/10.1080/0266476032000053664

Acta Universitatis Nicolai Copernici. Management

Downloads

  • PDF (Język Polski)

Published

2013-02-07

How to Cite

Bruzda, Joanna. 2013. “FORECASTING VIA WAVELET SMOOTHING”. Acta Universitatis Nicolai Copernici. Management 39 (February):77-95. https://doi.org/10.12775/AUNC_ZARZ.2012.006.
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 39 (2012)

Section

Articles

Stats

Number of views and downloads: 829
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

wavelet forecasting, nonparametric signal estimation, wavelet smoothing
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop