Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Lipschitz retractions onto sphere vs spherical cup in a Hilbert space
  • Home
  • /
  • Lipschitz retractions onto sphere vs spherical cup in a Hilbert space
  1. Home /
  2. Archives /
  3. Vol 52, No 2 (December 2018) /
  4. Articles

Lipschitz retractions onto sphere vs spherical cup in a Hilbert space

Authors

  • Phichet Chaoha
  • Jumpot Intrakul
  • Wacharin Wichiramala

Keywords

Lipschitz retraction, optimal retraction, spherical cup

Abstract

We prove that, in every infinite dimensional Hilbert space, there exists $t_0> -1$ such that the smallest Lipscthiz constant of retractions from the unit ball onto its boundary is the same as the smallest Lipschitz constant of retractions from the unit ball onto its $t$-spherical cup for all $t\in[-1,t_0]$.

References

M. Annoni and E. Casini, An upper bound for the Lipschitz retraction constant in l1, Studia. Math. 180 (2007) no. 1, 73–76.

M. Baronti, E. Casini and C. Franchetti, The retraction constant in some Banach spaces, J. Approx. Theory 120 (2003), 296–308.

Y. Benyamini and Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439-445.

K. Bolibok, Minimal displacement and retraction problems in infinite-dimensional Hilbert spaces, Proc. Amer. Math. Soc. 132 (2003), 1103–1111.

E. Casini and L. Piasecki, The minimal displacement and optimal retraction problems in some Banach spaces, J. Nonlinear Convex Anal. 18 (2017), no. 1, 61–71.

P. Chaoha, K. Goebel and I. Termwuttipong, Around Ulam’s question on retractions, Topol. Methods Nonlinear Anal. 40 (2012), 215–224.

P. Chaoha and J. Intrakul, Retraction from a unit ball onto its spherical cup, Linear Nonlinear Anal. 2 (2016), no. 1, 17–28.

K. Goebel and W.A. Kirk, Topics in Metric FixedPpoint Theory, Cambridge University Press, London, 1990.

T. Komorowski and J. Wośko, A remark on the retracting of a ball onto a sphere in an infinite dimensional Hilbert space, Math. Scand. 67 (1990), 223–226.

B. Nowak, On the Lipschitzian retraction of the unit ball in infinite dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 861–864.

L. Piasecki, Retracting ball onto sphere in BC0 (R), Topol. Methods Nonlinear Anal. 33 (2009), no. 2, 307–314.

L. Piasecki, Retracting a ball onto a sphere in some Banach spaces, Nonlinear Anal. 74 (2011), 396–399.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2018-11-24

How to Cite

1.
CHAOHA, Phichet, INTRAKUL, Jumpot and WICHIRAMALA, Wacharin. Lipschitz retractions onto sphere vs spherical cup in a Hilbert space. Topological Methods in Nonlinear Analysis. Online. 24 November 2018. Vol. 52, no. 2, pp. 677 - 691. [Accessed 2 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 52, No 2 (December 2018)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop