### A note on dimensional entropy for amenable group actions

DOI: http://dx.doi.org/10.12775/TMNA.2017.056

#### Abstract

#### Keywords

#### References

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125–136.

M. Coornaert, Topological Dimension and Dynamical Systems, Springer, Cham, 2015.

D.J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal. 263 (2012), no. 8, 2228–2254.

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Syst. Theory 1 (1967), 1–49.

D. Kerr and H. Li, Ergodic Theory: Independence and Dichotomies, Springer Monographs in Mathematics, Springer, Cham 2016.

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), 259–295.

D.S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987), 1–141.

Y.B. Pesin, Dimension Theory in Dynamical Systems, Contemporary Views and Applications, University of Chicago Press, Chicago, IL, 1997.

S.G. Simpson, Symbolic dynamics: Entropy =Dimension =Complexity, Theory Comput. Syst. 56 (2015), 527–543.

D. Zheng and E. Chen, Bowen entropy for actions of amenable groups, Israel J. Math. 212 (2016), no. 2, 895–911.

### Refbacks

- There are currently no refbacks.