### An indefinite concave-convex equation under a Neumann boundary condition II

DOI: http://dx.doi.org/10.12775/TMNA.2017.007

#### Abstract

#### Keywords

#### References

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709.

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indeﬁnite elliptic problems, J. Diﬀerential Equations 146 (1998), 336–374.

A. Ambrosetti, H. Brezis and G. Cerami, Combined eﬀects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.

M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340.

M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161–180.

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525–598.

J. López-Gómez, M. Molina-Meyer and A. Tellini, The uniqueness of the linearly stable positive solution for a class of superlinear indeﬁnite problems with nonhomogeneous boundary conditions, J. Diﬀerential Equations 255 (2013), 503–523.

T. Ouyang, On the positive solutions of semilinear equations ∆u + λu − hup = 0 on the compact manifolds, Trans. Amer. Math. Soc. 331 (1992), 503–527.

P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513.

H. Ramos Quoirin and K. Umezu, Positive steady states of an indeﬁnite equation with a nonlinear boundary condition: existence, multiplicity and asymptotic proﬁles, Calc. Var. Partial Diﬀerential Equations 55 (2016), no. 4, paper no. 102.

H. Ramos Quoirin and K. Umezu, Bifurcation for a logistic elliptic equation with nonlinear boundary conditions: A limiting case, J. Math. Anal. Appl. 428 (2015), 1265–1285.

H. Ramos Quoirin and K. Umezu, On a concave-convex elliptic problem with a nonlinear boundary condition, Ann. Mat. Pura Appl. 195 (2016), 1833–1863.

H. Ramos Quoirin and K. Umezu, An indeﬁnite concave-convex equation under a Neumann boundary condition I, preprint. arXiv:1603.04940

G.T. Whyburn, Topological Analysis, Second, revised edition, Princeton Mathematical Series, Vol. 23, Princeton University Press, Princeton, 1964.

### Refbacks

- There are currently no refbacks.