Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Temporal Alethic Dyadic Deontic Logic and the Contrary-to-Duty Obligation Paradox
  • Home
  • /
  • Temporal Alethic Dyadic Deontic Logic and the Contrary-to-Duty Obligation Paradox
  1. Home /
  2. Archives /
  3. Vol. 27 No. 1 (2018): March /
  4. Articles

Temporal Alethic Dyadic Deontic Logic and the Contrary-to-Duty Obligation Paradox

Authors

  • Daniel Rönnedal Stockholm University

DOI:

https://doi.org/10.12775/LLP.2017.012

Keywords

T × W logics, temporal logic, modal logic, dyadic deontic logic, semantic tableaux, conditional norms, contrary-to-duty obligations, the contrary-to-duty (obligation) paradox

Abstract

A contrary-to-duty obligation (sometimes called a reparational duty) is a conditional obligation where the condition is forbidden, e.g. “if you have hurt your friend, you should apologise”, “if he is guilty, he should confess”, and “if she will not keep her promise to you, she ought to call you”. It has proven very difficult to find plausible formalisations of such obligations in most deontic systems. In this paper, we will introduce and explore a set of temporal alethic dyadic deontic systems, i.e., systems that include temporal, alethic and dyadic deontic operators. We will then show how it is possible to use our formal apparatus to symbolise contrary-to-duty obligations and to solve the so-called contrary-to-duty (obligation) paradox, a problem well known in deontic logic. We will argue that this response to the puzzle has many attractive features. Semantic tableaux are used to characterise our systems proof theoretically and a kind of possible world semantics, inspired by the so-called T× W semantics, to characterise them semantically. Our models contain several different accessibility relations and a preference relation between possible worlds, which are used in the definitions of the truth conditions for the various operators. Soundness results are obtained for every tableau system and completeness results for a subclass of them.

Author Biography

Daniel Rönnedal, Stockholm University

Department of Philosophy

References

Alchourrón, C.E., and E. Bulygin, “Normative knowledge and truth”, pages 25–45 in J.J.E. Garcia et al. (eds.), Philosophical Analysis in Latin America, D. Reidel Publishing Company, 1984.

Anderson, A.R. (1956), “The formal analysis of normativesystems”, pages 147–213 in N. Rescher (ed.), The Logic of Decision and Action, Pittsburg: University of Pittsburg Press, 1967.

Bailhache, P., “Les normes dans le temps et sur l’action. Essai de logique déontique”, Université de Nantes, 1986.

Bailhache, P., “Essai de logique déontique”, Paris, Librarie Philosophique, Vrin, Collection Mathesis, 1991.

Bailhache, P., “The deontic branching time: Two related conceptions”, Logique et Analyse 36 (1993): 159–175.

Bailhache, P., “Canonical models for temporal deontic logic”, Logique et Analyse 149 (1995): 3–21.

Bartha, P., “Moral preference, contrary-to-duty obligation and defeasible oughts”, pages 93–108 in [37].

Belnap, N., M. Perloff, and M. Xu, Facing the Future: Agents and Choices in Our Indeterminist World, Oxford, Oxford University Press, 2001.

Brown, M.A., “Agents with changing and conflicting commitments: A preliminary study”, page 109–125 in [37].

Brown, M.A., “Conditional obligation and positive permission for agents in time”, Nordic Journal of Philosophical Logic 5, 2 (2000): 83–112.

Brown, M.A., “Rich deontic logic: A preliminary study”, Journal of Applied Logic 2 (2004): 19–37.

Burgess, J.P., “Basic Tense Logic”, pages 89–133 and 1–42 in D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 2 and Vol. 7 (2nd Edition), Kluwer Academic Publishers, 1984 and 2002, respectively. DOI: 10.1007/978-94-009-6259-0_2 and 10.1007/978-94-017-0462-5_1

Carmo, J., and A.J.I. Jones, “Deontic logic and contrary-to-duties”, pages 265–343 in D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd Edition, Vol. 8, Kluwer Academic Publishers, 2002. DOI: 10.1007/978-94-010-0387-2_4

Chellas, B.F., The Logical Form of Imperatives, Stanford, Perry Lane Press, 1969.

Chellas, B.F., Modal Logic: An Introduction, Cambridge, Cambridge University Press, 1980.

Chisholm, R.M., “Contrary-to-duty imperatives and deontic logic”, Analysis 24, 2 (1963): 33–36. DOI: 10.1093/analys/24.2.33

Ciuni, R., and A. Zanardo, “Completeness of a branching-time logic with possible choices”, Studia Logica 96, 3 (2010): 393–420. DOI: 10.1007/s11225-010-9291-1

Cox, Azizah Al-Hibri, Deontic Logic: A Comprehensive Appraisal and a New Proposal, University Press of America, 1978.

D’Agostino, M., D.M. Gabbay, R.Hähnle, and J. Posegga (eds.), Handbook of Tableau Methods, Dordrecht, Kluwer Academic Publishers, 1999. DOI: 10.1007/978-94-017-1754-0

Danielsson, S., Preference and Obligation: Studies in the Logic of Ethics, Uppsala: Filosofiska föreningen, 1968.

DiMaio, M.C., and A. Zanardo, “A Gabbay-rule free axiomatization of T × W validity”, Journal of Philosophical Logic 27 (1998): 435–487.

Feldman, F., Doing the Best We Can: An Essay in Informal Deontic Logic, Dordrecht: D. Reidel Publishing Company, 1986.

Feldman, F., “A simpler solution to the paradoxes of deontic logic”, Philosophical Perspectives 4 (1990): 309–341. DOI: 10.2307/2214197

Fitting, M., Proof Methods for Modal and Intuitionistic Logics, Dordrecht, D. Reidel Publishing Company, 1983.DOI: 10.1007/978-94-017-2794-5

Fitting, M., and R.L. Mendelsohn, First-Order Modal Logic, Kluwer Academic Publishers, 1998. DOI: 10.1007/978-94-011-5292-1

Gabbay, D.M., and F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd Edition, Vol. 3, Dordrecht, Kluwer Academic Publishers, 2001. DOI: 10.1007/978-94-017-0454-0

Gabbay, D.M., A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and Applications, Amsterdam, Elsevier, 2003.

Hansson, B., “An analysis of some deontic logics”, Noûs 3 (1969): 373–398. DOI: 10.2307/2214372

Hilpinen, R. (ed.), New Studies in Deontic Logic: Norms, Actions, and the Foundation of Ethics, Dordrecht, D. Reidel Publishing Company, 1981. DOI: 10.1007/978-94-009-8484-4

Horty, J.F., Agency and Deontic Logic, Oxford, Oxford University Press, 2001. DOI: 10.1093/0195134613.001.0001

Jeffrey, R.C., Formal Logic: Its Scope and Limits, McGraw-Hill, New York, 1967.

Kracht, M., Tools and Techniques in Modal Logic, Amsterdam, Elsevier, 1999.

Lenk, H., Normenlogik, Pullach bei München: Verlag Dokumentation, 1974.

Lewis, D., Counterfactuals, Oxford: Basil Blackwell, 1973.

Lewis, D., “Semantic analysis for dyadic deontic logic”, pages 1–14 in S. Stenlund (ed.), Logical Theory and Semantical Analysis, D. Reidel Publishing Company, Dordrecht, 1974.

Loewer, B., and M. Belzer, “Dyadic deontic detachment”, Synthese 54, 2 (1983): 295–318. DOI: 10.1007/BF00869396

McNamara, P., and H. Prakken (eds.), Norms, Logics and Information Systems: New Studies in Deontic Logic and Computer Science, Amsterdam, IOS Press, 1999.

Priest, G., An Introduction to Non-Classical Logic, Cambridge, Cambridge University Press, 2008. DOI: 10.1017/CBO9780511801174

Prior, A., “The paradoxes of derived obligation”, Mind 63, 249 (1954): 64–65. DOI: 10.1093/mind/LXIII.249.64

Prior, A., Past, Present and Future, Oxford, Clarendon, 1967. DOI: 10.1093/acprof:oso/9780198243113.001.0001

Rescher, N., “An axiom system for deontic logic”, Philosophical Studies 9, 1–2 (1958): 24–30. DOI: 10.1007/BF00797870

Rescher, N., and A. Urquhart, Temporal Logic, Wien, Springer-Verlag, 1971. DOI: 10.1007/978-3-7091-7664-1

Rönnedal, D., “Dyadic deontic logic and semantic tableaux”, Logic and Logical Philosophy 18, 3–4 (2009): 221–252. DOI: 10.12775/LLP.2009.011

Rönnedal, D., “Temporal alethic-deontic logic and semantic tableaux”, Journal of Applied Logic 10, 3 (2012): 219–237. DOI: 10.1016/j.jal.2012.03.002

Rönnedal, D., “Extensions of deontic logic: An investigation into some multi-modal systems”, Department of Philosophy, Stockholm University, 2012.

Rönnedal, D., “Quantified temporal alethic deontic logic”, Logic and Logical Philosophy 24, 1 (2015): 19–59. DOI: 10.12775/LLP.2014.016

Smullyan, R.M., First-Order Logic, Heidelberg, Springer-Verlag, 1968. DOI: 10.1007/978-3-642-86718-7

Thomason, R., “Deontic logic as founded on tense logic”, pages 165–176, Chapter 7, in [29]. DOI: 10.1007/978-94-009-8484-4_7

Thomason, R., “Deontic logic and the role of freedom in moral deliberation”, pages 177–186, Chapter 8, in [29]. DOI: 10.1007/978-94-009-8484-4_8

Thomason, R., “Combinations of tense and modality”, pages 135–165 and 205–234 in D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 2 and Vol. 7 (2nd Edition), 1984 and 2002, respectively. DOI: 10.1007/978-94-009-6259-0_3 and 10.1007/978-94-017-0462-5_3

van Eck, J., “A system of temporally relative modal and deontic predicate logic and its philosophical applications”, Department of Philosophy, University of Groningen, The Netherlands, 1981.

van Eck, J., “A system of temporally relative modal and deontic predicate logic and its philosophical applications”, Logique et Analyse 25, 99 (1982): 249–290.

van Eck, J., “A system of temporally relative modal and deontic predicate logic and its philosophical application”, Logique et Analyse 25, 100 (1982): 339–381.

van Fraassen, B.C., “The logic of conditional obligation”, Journal of Philosophical Logic 1, 3–4 (1972): 417–438. DOI: 10.1007/BF00255570

van Fraassen, B.C., “Values and the heart’s command”, The Journal of Philosophy LXX (1973): 5–19. DOI: 10.2307/2024762

von Kutschera, F., “Normative Präferenzen und bedingte Gebote”, pages 137–165 in [33].

von Kutschera, F., “T × W completeness”, Journal of Philosophical Logic 26 (1997): 241–250.

von Wright, G.H., “A new system of deontic logic”, Danish Yearbook of Philosophy 1 (1964): 173–182. DOI: 10.1007/978-94-010-3146-2_4

Wölfl, S., “Combinations of tense and modality for predicate logic”, Journal of Philosophical Logic 28 (1999): 371–398.

Zanardo, A., “Branching-time logic with quantification over branches: The point of view of modal logic”, The Journal of Symbolic Logic 61, 1 (1996): 1–39. DOI 10.2307/2275595

Åqvist, L., “Revised foundations for imperative-epistemic and interrogative logic”, Theoria 37, 1 (1971): 33–73. DOI: 10.1111/j.1755-2567.1971.tb00060.x

Åqvist, L., “Modal logic with subjunctive conditionals and dispositional predicates”, Journal of Philosophical Logic 2, 1 (1973): 1–76. DOI: 10.1007/BF02115609

Åqvist, L., “Deontic Logic”, pages 605–714 and 147–264 in D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 2 and Vol. 8 (2nd Edition), 1984 and 2002, respectively. DOI: 10.1007/978-94-009-6259-0_11 and 10.1007/978-94-010-0387-2_3

Åqvist, L., Introduction to Deontic Logic and the Theory of Normative Systems, Naples, Bibliopolis, 1987.

Åqvist, L., “The logic of historical necessity as founded on two-dimensional modal tense logic”, Journal of Philosophical Logic 28, 4 (1999) 329–369. DOI: 10.1023/A:1004425728816

Åqvist, L., “Conditionality and branching time in deontic logic: Further remarks on the Alchourrón and Bulygin (1983) Example”, pages 13–37 in K. Segerberg and R. Sliwinski (eds.), Logic, Law, Morality: Thirteen essays in Practical Philosophy in Honour of Lennart Åqvist, Uppsala philosophical studies 51, Uppsala: Uppsala University, 2003.

Åqvist, L., “Combinations of tense and deontic modality: On the Rt approach to temporal logic with historical necessity and conditional obligation”, Journal of Applied Logic 3 (2005): 421–460.

Åqvist, L., and J. Hoepelman, “Some theorems about a “tree” system of deontic tense logic”, pages 187–221 in [29]. 10.1007/978-94-009-8484-4_9

Logic and Logical Philosophy

Downloads

  • PDF

Published

2017-05-01

How to Cite

1.
RÖNNEDAL, Daniel. Temporal Alethic Dyadic Deontic Logic and the Contrary-to-Duty Obligation Paradox. Logic and Logical Philosophy. Online. 1 May 2017. Vol. 27, no. 1, pp. 3-52. [Accessed 4 July 2025]. DOI 10.12775/LLP.2017.012.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 27 No. 1 (2018): March

Section

Articles

Stats

Number of views and downloads: 1112
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

T × W logics, temporal logic, modal logic, dyadic deontic logic, semantic tableaux, conditional norms, contrary-to-duty obligations, the contrary-to-duty (obligation) paradox
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop