Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Set-theoretic mereology
  • Home
  • /
  • Set-theoretic mereology
  1. Home /
  2. Archives /
  3. Vol. 25 No. 3 (2016): September /
  4. Articles

Set-theoretic mereology

Authors

  • Joel David Hamkins College of Staten Island of CUNY
  • Makoto Kikuchi Kobe University

DOI:

https://doi.org/10.12775/LLP.2016.007

Keywords

mereology, set theory, foundations of mathematics

Abstract

We consider a set-theoretic version of mereology based on the inclusion relation ⊆ and analyze how well it might serve as a foundation of mathematics. After establishing the non-definability of ∈ from ⊆, we identify the natural axioms for ⊆-based mereology, which constitute a finitely axiomatizable, complete, decidable theory. Ultimately, for these reasons, we conclude that this form of set-theoretic mereology cannot by itself serve as a foundation of mathematics. Meanwhile, augmented forms of set-theoretic mereology, such as that obtained by adding the singleton operator, are foundationally robust.

Author Biographies

Joel David Hamkins, College of Staten Island of CUNY

Mathematics, Philosophy, Computer Science; The Graduate Center of The City University of New York

Makoto Kikuchi, Kobe University

Graduate School of System Informatics

References

A. Baudisch, D. Seese, P. Tuschik, and M. Weese, “Decidability and quantifier-elimination”, pages 235–270 in Model-theoretic logics, Perspect. Math. Logic, Springer, New York, 1985.

L. Champollion and M. Krifka, “Mereology”, in Cambridge Handbook of Semantics, P. Dekker and M. Aloni (eds.) Cambridge University Press (in press).

C.C. Chang and H.J. Keisler, Model theory, volume 73 of “Studies in Logic and the Foundations of Mathematics”, North-Holland Publishing Co., Amsterdam, third edition, 1990.

Ju.L. Eršov, “Decidability of the elementary theory of relatively complemented lattices and of the theory of filters”, Algebra i Logika Sem., 3 3 (1964): 17–38.

J.D. Hamkins, “Is the inclusion version of Kunen inconsistency theorem true?” MathOverflow answer, 2013. http://mathoverflow.net/a/144236/1946 (accessed 25.04.2016).

G. Hellman, “Mereology in philosophy of mathematics”, preprint available on the author’s web page at http://www.tc.umn.edu/~hellm001/Publications/MereologyandPhilMath.pdf.

W. Hodges, Model Theory, volume 42 of “Encyclopedia of Mathematics and its Applications”, Cambridge University Press, Cambridge, 1993.

A. Kanamori, “The empty set, the singleton, and the ordered pair”, Bull. Symbolic Logic, 9, 3 (2003): 273–298. DOI:10.2178/bsl/1058448674

D. Lewis, Parts of Classes, Blackwell, 1991.

J.D. Monk, Mathematical Logic, Springer-Verlag, New York–Heidelberg, 1976. Graduate Texts in Mathematics, No. 37.

B. Poizat, A Course in Model Theory, Universitext, Springer-Verlag, New York, 2000. An introduction to contemporary mathematical logic, Translated from the French by Moses Klein and revised by the author.

A. Varzi, “Mereology”, in The Stanford Encyclopedia of Philosophy (Spring 2016 Edition), E.N. Zalta (ed.). http://plato.stanford.edu/archives/spr2016/entries/mereology/

M. Weese, “Decidable extensions of the theory of Boolean algebras”, pages 983–1066 in Handbook of Boolean algebras, Vol. 3, North-Holland, Amsterdam, 1989.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2016-05-16

How to Cite

1.
HAMKINS, Joel David and KIKUCHI, Makoto. Set-theoretic mereology. Logic and Logical Philosophy. Online. 16 May 2016. Vol. 25, no. 3, pp. 285-308. [Accessed 1 July 2025]. DOI 10.12775/LLP.2016.007.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 25 No. 3 (2016): September

Section

Articles

Stats

Number of views and downloads: 653
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

mereology, set theory, foundations of mathematics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop