Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

On the proof-theory of a first-order extension of GL
  • Home
  • /
  • On the proof-theory of a first-order extension of GL
  1. Home /
  2. Archives /
  3. Vol. 23 No. 3 (2014): September /
  4. Articles

On the proof-theory of a first-order extension of GL

Authors

  • Yehuda Schwartz Toronto Stn Q, Toronto
  • George Tourlakis York University, Toronto

DOI:

https://doi.org/10.12775/LLP.2013.030

Keywords

Gentzen-style logic, Gentzen’s Hauptsatz, Hilbert-style logic, GL, K4, provability logic, provability predicate, modal first-order logic, sequent calculus, cut-elimination, reflection theorem, Craig interpolation, arithmetical interpretation, soundness, a

Abstract

We introduce a first order extension of GL, called ML3, and develop its proof theory via a proxy cut-free sequent calculus GLTS. We prove the highly nontrivial result that cut is a derived rule in GLTS, a result that is unavailable in other known first-order extensions of GL. This leads to proofs of weak reflection and the related conservation result for ML3, as well as proofs for Craig’s interpolation theorem for GLTS. Turning to semantics we prove that ML3 is sound with respect to arithmetical interpretations and that it is also sound and complete with respect to converse well-founded and transitive finite Kripke models. This leads us to expect that a Solovay-like proof of arithmetical completeness of ML3 is possible.

Author Biography

George Tourlakis, York University, Toronto

Dept. of EECS, Lassonde School of Engineering

References

Avron, A., “On modal systems having arithmetical interpretations”, Journal of Symbolic Logic, 49 (1984), 3: 935–942. DOI: 10.2307/2274147

Boolos, G., The Logic of Provability, Cambridge University Press, Cambridge, 1993.

Fine, K., “Failures of the interpolation lemma in quantified modal logic”, Journal of Symbolic Logic, 44 (1979), 2: 201–206. DOI: 10.2307/2273727

Fitting, M., and R.L. Mendelsohn, First-Order Modal Logic, Kluwer Academic Publishers, Dordrecht, 1998.

Gries, D., and F.B. Schneider, “Adding the everywhere operator to propositional logic”, Journal Logic Computat., 8 (1998), 1: 119–129. DOI: 10.1093/logcom/8.1.119

Kibedi, F., and G. Tourlakis, “A modal extension of weak generalization predicate logic”, Logic Journal of the IGPL, 14 (2006), 4: 591–621.

Kripke, S.A., “A completeness theorem in modal logic”, Journal of Symbolic Logic, 24 (1959): 1–14. DOI: 10.1093/jigpal/jzl025

Leivant, D., “On the proof theory of the modal logic for arithmetic provability”, Journal of Symbolic Logic, 46 (1981), 3: 531–538. DOI: 10.2307/2273755

Mendelson, E., Introduction to Mathematical Logic, 3rd edition, Wadsworth & Brooks, Monterey, California, 1987.

Montagna, F., “The predicate modal logic of provability”, Notre Dame Journal of Formal Logic, 25 (1984): 179–189. DOI: 10.1305/ndjfl/1093870577

Sambin, G., and S. Valentini, “A modal sequent calculus for a fragment of arithmetic”, Studia Logica, 39 (1980), 2/3: 245–256. DOI: 10.1007/BF00370323

Sambin, G., and S. Valentini, “The modal logic of provability. The sequential approach”, Journal of Philosophical Logic, 11 (1982), 3: 311–342. DOI: 10.1007/BF00293433

Sasaki, K., “Löb’s axiom and cut-elimination theorem”, Academia Mathematical Sciences and Information Engineering Nanzan University, 1 (2001): 91–98.

Schütte, K., Proof Theory, Springer-Verlag, New York, 1977.

Schwartz, Y., and G. Tourlakis, “On the proof-theory of two formalisations of modal first-order logic”, Studia Logica, 96 (2010), 3: 349–373. DOI: 10.1007/s11225-010-9294-y

Shoenfield, J.R., Mathematical Logic, Addison-Wesley, Reading, Massachusetts, 1967.

Smoryński, C., Self-Reference and Modal Logic, Springer-Verlag, New York, 1985.

Takeuti, G., Proof Theory, North-Holland, Amsterdam, 1975.

Tourlakis, G., Lectures in Logic and Set Theory; Volume 1: Mathematical Logic, Cambridge University Press, Cambridge, 2003.

Tourlakis, G., and F. Kibedi, “A modal extension of first order classical logic. Part I, Bulletin of the Section of Logic, 32 (2003), 4: 165–178. PDF

Tourlakis, G., and F. Kibedi, “A modal extension of first order classical logic. Part II”, Bulletin of the Section of Logic, 33 (2004), 1: 1–10. PDF

Valentini, S., “The modal logic of provability. Cut-elimination”, Journal of Philosophical Logic, 12 (1983), 4: 471–476. DOI: 10.1007/BF00249262

Vardanyan, V.A., “On the predicate logic of provability”, preprint of the Scientific Council on the Complexity Problem “Cybernetics”, Academy of Sciences of the USSR (1985, in Russian).

Logic and Logical Philosophy

Downloads

  • PDF

Published

2013-09-18

How to Cite

1.
SCHWARTZ, Yehuda and TOURLAKIS, George. On the proof-theory of a first-order extension of GL. Logic and Logical Philosophy. Online. 18 September 2013. Vol. 23, no. 3, p. 329–363. [Accessed 1 July 2025]. DOI 10.12775/LLP.2013.030.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 23 No. 3 (2014): September

Section

Articles

Stats

Number of views and downloads: 704
Number of citations: 4

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

Gentzen-style logic, Gentzen’s Hauptsatz, Hilbert-style logic, GL, K4, provability logic, provability predicate, modal first-order logic, sequent calculus, cut-elimination, reflection theorem, Craig interpolation, arithmetical interpretation, soundness, a
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop