Changes in the balance between C3 and C4 plants expected in Poland with the global change

Zdzisław Bernacki



We can expect significant changes in the plant cover structure and crop structure due to the climate change, and the response of plants with different photosynthetic pathways to global change may be crucial for agriculture. The paper analyzes the impact of habitat factors connected with the climate change: temperature and concentration of CO2 in the atmosphere on the change of C3 and C4 plants primary production (NPP). The Ehleringer model describing the balance between C3 and C4 plants indicates that a shift in the balance in favor of C4 plants and the increase in CO2 levels, which has continued since the mid-nineteenth up to the present day, would require a temperature increase by 5-10°C. Nonetheless, this increase is much lower, while the review of previous studies and some phenomena observed in the Poland area: high level of NPP in maize crops and the increased in contribution of C4 species in the flora indicate the shift in the balance in favor of C4 plants. This fact can be explained by a factor not included to the Ehleringer model: the availability of water and nitrogen.


climate change; primary production; photolytic pathways; alien species

Full Text:



Acock B. & Allen L. H., 1985, Crop responses to elevated carbon dioxide concentration, [in:] B. R. Strain, J. D. Cure (eds.), Direct effect of increasing carbon dioxide on vegetation, US Department of Energy, Springfield: 55-97. Bazzaz F. A., 1990, The response of natural ecosystem to the rising global CO2 levels, Ann. Rev. Ecol. Syst. 21: 187-196.

Bernacki Z., 1992, Produkcja pierwotna agrocenoz Wielkopolski [Primary production of agrocenoses in Wielkopolska], [in:] S. Bałazy, L. Ryszkowski (eds.), Produkcja pierwotna, zasoby zwierząt i wymywanie materii organicznej w krajobrazie rolniczym [Primary production, animal resources and organic matter leaching in agricultural landscape], ZBŚRiL PAN, Poznań: 57-74.

Bernacki Z., 1993, A brief recapitulation of research project: Influence of CO2 concentration on primary production of rice and maize crops, [in:] Fellowship Research Report 13, The Matsumae International Foundation, Tokyo: 217-224.

Bernacki Z., 2012, Przestrzenne zróżnicowanie produkcji pierwotnej i rozkładu materii organicznej w krajobrazie rolniczym na przykładzie Parku Krajobrazowego im. gen. Dezyderego Chłapowskiego. Znaczenie struktury krajobrazu [Spatial differentiation of primary production and decomposition of organic matter in agricultural landscape, on the example of gen. Dezydery Chłapowski Landscape Park: The role of landscape structure], Rozprawy Naukowe 437, Wyd. Uniwersytetu Przyrodniczego w Poznaniu, Poznań.

Bhattacharya N. C., Biswas P. K., Bhattacharya S., Sionit N. & Strain B. R., 1985, Growth and yield response of sweet potato to atmospheric CO2 enrichment, Crop Science 25: 975-981.[]

Ceulemans R., Jach M. E., Van der Velde R., Lin J. X. & Stevens M., 2002, Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L.) after three yeas of enrichment, Global Change Biology 8: 153-162.[]

Curtis P. S., Drake B. G., Leadly P. W., Arp W. J. & Whigham D. F., 1989, Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh, Oecologia 78: 20-26.[]

Diaz S., Grime J. P., Harris J. & McPerson E., 1993, Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide, Nature 364: 616-617.[]

Easterling D. R. & Wehner M. F., 2009, Is the climate warming or cooling? Geophysical Research Letters 36, L08706, doi:10.1029/2009GL037810.[]

Ehleringer J. R. Cerling T. E. & Helliker B. R., 1997, C4 photosynthesis, atmospheric CO2 and climate, Oecologia 112: 285-299.[]

Emmerich W. E., 2007, Ecosystem water use efficiency in a semiarid shrubland and grassland community, Rangeland Ecol. Manage. 60: 464-470.

Esser G., 1987, Sensivity of global carbon pools and fluxes to human and potential climatic impacts, Tellus 39B: 245-260.

Finzi A. C., Moore D. J., DeLucia E. H., Lichter J., Hofmockel K. S., Jackson R. B., Kim H. S., Matamala R., McCarthy H. R., Oren R., Pippen J. S. & Schlesinger W. H., 2006, Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm temperate forest, Ecology 87: 15-25.[]

Ford M. A. & Thorne G. N., 1967, Effect of CO2 concentration on growth of sugar beet, barley kale and maize, Ann. Bot. N. S. 31: 629-644.

Ghosh P., Bhattacharya S. K. & Ghosh P., 2005, Atmospheric CO2 during the Late Paleozoic and Mesozoic: Estimates from Indian soils, [in:] J. R. Ehleringer, T. E. Cerling, M. D. Dearing (eds.), A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York: 8-34.

Gifford R. M., 1977, Growth pattern, carbon dioxide exchange and dry weight distribution in wheat growing under differing photosynthetic environments, Austral. J. Plant Physiol. 4: 99-110.

GUS, 2008, Użytkowanie gruntów powierzchnia zasiewów i pogłowie zwierząt gospodarskich w 2008 r., Główny Urząd Statystyczny, Departament Rolnictwa i Gospodarki Żywnościowej [Land use, crop areas and livestock in 2008, the Central Statistical Office, Department of Agriculture and Food Economy], Warszawa.

Herbichowa M., 1969a, Primary production of a potato field, Ecol. Pol. Ser. A. 17: 74-86.

Herbichowa M., 1969b, Primary production of a ryefield, Ecol. Pol. Ser. A. 17: 343-350.

Holsten, A., Vetter T., Vohland K. & Krysanova V., 2000, Impact of climate change on soil moisture dynamics in Brandenburg and consequences for nature conservation areas, Ecol. Modell. 220: 2076-2087.

Intergovernmental Panel on Climate Change, 2007, Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth, [in:] R. K. Pachauri, A. Reisinger (eds.), Assessment Report of the Intergovernmental Panelon Climate Change, IPCC, Geneva.

Jameson P. D., Berntsen J., Evert F., Kimball B. A., Olesen J. E., Pinter P. J., Jr., Porter J. R. & Semenov M. A., 2000, Modeling CO2 effects on wheat with varying nitrogen supplies, Agriculture Ecosystems and Environment 82: 27-37.

Kakani V. G. & Reddy K., 2007, Temperature response of C4 species big bluestem (Andropogon gerardii) is modified by growing carbon dioxide concentration, Environmental and Experimental Botany 61: 281-290.

Kędziora A., 2008, Bilans wody i energii w krajobrazie rolniczym [Water and energy balance in agricultural landscape], [in:] F. Dubert, J. Horalik, A. Kędziora, J. Puchalski, W. Święcicki, G. Józefaciuk (eds.), Jakość środowiska, surowców i żywności, [Quality of environment, materials and food], Materiały II Sympozjum Naukowego, Instytut Agrofizyki im. B. Dobrzańskiego PAN, Lublin: 251-254.

Kimball B. A., Kobayashi K. & Bindi M., 2002, Responses of agricultural crops to free air CO2 enrichment, Advances in Agronomy 77: 293-368.[]

Kubien D. S. & Sage R. F., 2003, C4 grasses in boreal fens: their occurrence in relation to microsite characteristics, Oecologia 137: 330-337.[]

Kukielska C., 1973a, Primary productivity of crop fields, Bull. Acad. Polonaise Sci. 21: 109-115.

Kukielska C., 1973b, Studies on the primary production of the potato field, Ekol. Pol. 21: 73-115.

Leakey A. D. B., 2009, Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel, Proceedings of The Royal Society B, Biological Science 276: 2333-2343.

Lindroth R. L., Kinney K. K. & Platz C. L., 1993, Responses of deciduous trees to elevated atmospheric CO2. Productivity phytochemistry and insect performance, Ecology 74: 763-777.[]

Mitchell J. F. B., Manabe S., Tokioka T. & Meleshko V., 1990, Equilibrium climate change and its implications for the future, [in:] J. T. Houghton, G. J. Jenkins, J. J. Ephraums (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, New York: 131-164.

Nemani R. R., Keeling C. D., Hashimoto H., Jolly W. M., Piper S. C., Tucker C. J., Mynen R. B. & Running S. W., 2003, Climate driven increases in global terrestrial net primary production from 1982 to 1999, Science 300: 1560-1563.[] []

Nijs I. & Impens I., 1993, Effects of long term elevated atmospheric carbon dioxide on Lolium perenne and Trifolium repens using a simple photosynthetic model, Vegetatio 104/105: 421-431.

Niu S. L., Jiang G. M., Li Y. G., Gao L. M. & Liu M. Z., 2003, Diurnal gas exchange and superior resources use efficiency of typical C4 species in Hunshandak Sandland, China, Photosynthetica 41: 221-226.[]

Norby R. J., O’Neill E. G. & Luxmoore R. J., 1986, Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of seedlings in nutrient-poor soil, Plant Physiol. 82: 83-89.[]

Norby R. J., Warren J. M., Iversen C. M., Medlyn B. E., McMurtrie R. E. & Hoffman F. M., 2008, Nitrogen limitation is reducing the enhancement of NPP by elevated CO2 in a deciduous forest, American Geophysical Union, Fall Meeting 2008, abstract B32B 05.

Olesen J. E., Bøcher P. K. & Jensen T., 2000, Comparison of scales of climate and soil data for aggregating simulated yield of winter wheat in Denmark, Agriculture, Ecosystems and Environment 82: 213-220.

Oliver R. J., Finch J. W. & Taylor G., 2009, Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and the implications for yield, Global Change Biology - Bioenergy 1: 97-114.[]

Osborne C. P. & Beerling D. J., 2006, Nature’s green revolution: the remarkable evolutionary rise of C4 plants, Phil. Trans. Roy. Soc. London, B Biol. Sci. 29: 173-194.[]

Pasternak D., 1974, Primary production of field with winter wheat, Ekol. Pol. 22: 364-378.

Patterson D. F. & Flint E. P., 1982, Increasing effect of CO2 and nutrient concentration, Weed Sci. 30: 389-394.

Pearcy R. W., Tumosa N. & Williams K., 1981, Relationships between growth, photosynthesis and competitive interactions for a C3 and a C4 plant, Oecologia 48: 371-376.

Pearce F., 1997, State of the climate - A time for action, WWF report.

Poorter H., 1993, Interspeciffic variation in the growth response of plants to an elevated ambient CO2 concentration, Vegetatio 104/105: 77-97.[]

Potvin C. & Strain B. R., 1985, Photosynthetic response to growth temperature and CO2 enrichment in two species of C4 grasses, Can. J. Bot. 63: 483-487.

Rogers H.H., Thomas J.F. & Bingham G.E., 1983, Response of agronomic and forest species to elevated atmospheric carbon dioxide, Science 220: 428-429.[] []

Root T. L., Price J. T., Hall K. R., Schneider S. H., Rosenzweig C. & Pounds J. A., 2003, Fingerprints of global warming on wild animals and plants, Nature 421: 57-60.[] []

Round P. D. & Gale G. A., 2008, Changes in the status of Lophura pheasants in Khao Yai National Park, Thailand: a response to warming climate?, Biotropica 40: 225-230.[]

Rozema J., Lambers H., van de Geijn S. C. & Cambridge M. L. (eds.), 1993, CO2 and biosphere. Advances in Vegetation Science 14, Kluver Academic Publishers, Dordrecht, Boston, London.

Ruhl M., Bonis N. R., Reichart G. J., Sinninghe Damste J. S. & Kürschner W. M., 2011, Atmospheric carbon injection linked to end Triassic mass extinction, Science 333: 430-434.[] []

Sage R. F. & Pearcy R. W., 1987, The nitrogen use efficiency of C3 and C4 plants I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album L. and Amaranthus retroflexus L., Plant Physiol. 84: 954-958.[]

Shaw M. R., Zavaleta E. S., Chiariello N. R., Cleland E. E., Mooney H. A. & Field C. B., 2002, Grassland responses to global environmental changes suppressed by elevated CO2, Science 298: 1987-1990.[]

Siegenthaler U. & Oeschger H., 1987, Biospheric carbon dioxide emission during the past 200 years reconstructed by deconvolution ice core data, Tellus 39B: 140-154.

Sionit N., Morten D. A., Strain B. R. & Helmers H., 1981, Growth response of wheat to CO2 enrichment and different levels of mineral nutrition, Agr. J. 73: 1023-1027.

Strain B. R. & Chase V. C., 1966, Effect of past and prevailing temperatures on the carbon dioxide exchange capacities of some woody desert perennials, Ecology 47: 1043-1045.[]

Tissue D. T. & Oechel W. C., 1987, Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra, Ecology 68: 401-410.[]

Traczyk T., Traczyk H. & Pasternak Kuśnierska D., 1986, Primary production of root crops and industrial crops in the Jorka River watershred, Pol. Ecol. Stud. 11: 263-276.

Wall G. W., Brooks T. J., Adam N. R., Cousins A. B., Kimball B. A., Pinter P. J., Jr, LaMorte R. L., Triggs J., Ottman M. J., Leavitt S. W., Matthias A. D., Williams D. G. & Webber A. N., 2001, Elevated atmospheric CO2 Improved Sorghum plant water status by ameliorating the adverse effects of drought, New Phytologist 152: 231-248.

Ward J. K., Myers D. A. & Thomas R. B., 2009, Physiological and growth responses of C3 and C4 plants to reduced temperature when grown at low CO2 of the last Ice Age, Journal of Integrative Plant Biology 50: 1388-1395.[]

Wheeler T. R., Craufurd P. Q., Ellis R. H., Porter R. & Vara Prasad P. V., 2000, Temperature variability and the yield of annual crops, Agriculture, Ecosystems and Environment 82: 159-167.

Wilkoń-Michalska J. & Niżewska J., 1992, Produkcja pierwotna pól z uprawą kukurydzy (Zea mays L.) [Primary production of fields with maize crop], Acta Univ. Nicolai Copernici XLI, Nauki Mat.-Przyr. 80: 61-73.

Zając A. & Zając M. (eds.), 2001, Distribution atlas of vascular plants in Poland, Prac. Chorologii Komputerowej i Fundacja dla Uniwersytetu Jagiellońskiego, Kraków.

Partnerzy platformy czasopism