Ecological aspects of molecular mechanisms of epigenetic rearrangement of humoral systems of the renal function regulation

Sergey Dolomatov, Tatiana Sataieva, Walery Zukow, Yulia Kondakova, Edie Ramazanova

DOI: http://dx.doi.org/10.12775/EQ.2018.013

Abstract


Epigenetic transformation of chromatin is able to be induced by environmental factors and changes in the parameters of the state of metabolic processes in the body. Among them, the most common known factors are hypoxia (ischemia of the organ), hyperglycemia, heavy metals, endocrinopathies, infectious diseases.

The results of the review conclude that epigenetic mechanisms pay the very important contribution to the restructuring of humoral systems of renal regulation during renal failure sufficiently contributing to a progressive reduction of nephrons and directly preconditioning the unfavorable progress of the disease. In considering this potential etiologic factor, one must take into account several common triggers changing the epigenetic transformation of intrarenal synthesis and metabolism of physiologically active substances. Primary it is the formation of atypical foci of their products, which is most evident in the processes of restructuring of the RAS and nitric oxide systems. Secondary the renal coordinating humoral factors increasingly lose the control of regulation of homeostasis and switch on the pathophysiological way of progressive renal failure. Next are the epigenetic changes of proteins genes that perform key functions in the synthesis and metabolism of humoral factors in the regulation of renal functions. Uncontrolled synthesis of these peptides leads to a triggered enhancement of the process, again, involving epigenetic chromatin rearrangement.

The indicated regularity can be traced to unrestricted activation of RAAS and the renal system of TGF-beta. Other contributing factors occur as a result of unrestricted activation of RAAS and the TGF-beta system. On this background, there is a steady decline in the regulatory capabilities of the opposition control vector represented by the nitrogen oxide system, primarily by the constitutive isoforms eNOS and nNOS. The research of epigenetic processes during various nephropathies does not only enlightens theoretical basis for the pathogenesis of renal failure but also opens promising approaches for the development of new pharmacological corrects of renal function.


Keywords


kidneys; renal failure; epigenetics; renin-angiotensin-aldosterone system; transforming growth factor beta; nitric oxide

Full Text:

PDF

References


Abadir P.M., Walston J.D. & Carey R.M., 2012, Subcellular characteristics of the functional intracellular renin-angiotensin systems. Peptides 38(2): 437–445. [doi: 10.1016/j.peptides.2012.09.016].

Advani A., Huang Q., Thai K., Advani S.L., White K.E., Kelly D.J., Yuen D.A., Connelly K.A., Marsden P.A. & Gilbert R.E., 2011, Long-Term Administration of the Histone Deacetylase Inhibitor Vorinostat Attenuates Renal Injury in Experimental Diabetes through an Endothelial Nitric Oxide Synthase-Dependent Mechanism. Am J. Pathol. 178(5): 2205–2214. [doi: 10.1016/j.ajpath.2011.01.044].

Araki Y. & Mimura T., 2017, The Histone Modification Code in the Pathogenesis of Autoimmune Diseases. Mediators Inflamm. 2608605: 1-12. [doi: 10.1155/2017/2608605].

Auclair G. & Weber M., 2012, Mechanisms of DNA methylation and demethylation in mammals. Biochimie 94(11): 2202-2211. [doi: 10.1016/j.biochi.2012.05.016]

Azzam Z.S., Kinaneh S., Bahouth F., Ismael-Badarneh R., Khoury E. & Abassi Z., 2017, Involvement of Cytokines in the Pathogenesis of Salt and Water Imbalance in Congestive Heart Failure. Front. Immunol. 8: 716-728 (p. 1-13). [doi: 10.3389/fimmu.2017.00716].

Bavishi C., Bangalore S. & Messerli F.H., 2016, Renin Angiotensin Aldosterone System Inhibitors in Hypertension: Is There Evidence for Benefit Independent of Blood Pressure Reduction? Prog. Cardiovasc. Dis. 59(3): 253-261. [doi: 10.1016/j.pcad.2016.10.002].

Bechtel W., McGoohan S., Zeisberg E.M., Müller G.A., Kalbacher H., Salant D.J., Müller C.A., Kalluri R., Zeisberg M., 2010, Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 16(5): 544–550. [doi: 10.1038/nm.2135].

Beckerman P., Ko Y.-A. & Susztak K., 2014, Epigenetics: a new way to look at kidney diseases. Nephrol. Dial. Transplant. 29(10): 1821–1827. [doi: 10.1093/ndt/gfu026].

Bogdarina I., Welham S., King P.J., Burns S.P. & Clark A.J., 2007, Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ. Res. 100(4): 520–526. [doi: 10.1161/01.RES.0000258855.60637.58].

Bonventre J.V. & Yang L., 2011, Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 121(11): 4210–4221. [doi: 10.1172/JCI45161].

Bourgeois C.T., Satou R. & Prieto M.C., 2017, HDAC9 is an epigenetic repressor of kidney angiotensinogen establishing a sex difference. Biol. Sex Differ. 8(18): 1-10. [doi: 10.1186/s13293-017-0140-z].

Cerkezkayabekir A., Sanal F., Bakar E., Ulucam E. & Inan M., 2017, Naringin protects viscera from ischemia/reperfusion injury by regulating the nitric oxide level in a rat model. Biotech. Histochem. 92(4): 252-263. [doi: 10.1080/10520295.2017.1305499].

Chandel N., Husain M., Goel H., Salhan D., Lan X., Malhotra A., McGowan J. & Singhal P.C., 2013, VDR hypermethylation and HIV-induced T cell loss. J. Leukoc. Biol. 93(4): 623–631. [doi: 10.1189/jlb.0812383].

Chappell M.C., 2012, The Non-Classical Renin-Angiotensin System and Renal Function. Compr Physiol. 2(4): 2733–2752. [doi: 10.1002/cphy.c120002].

Chen K.W. & Chen L., 2017, Epigenetic Regulation of BDNF Gene during Development and Diseases. Int. J. Mol. Sci. 18(3): 571-780 (p. 1-10). [doi: 10.3390/ijms18030571].

Chevalier R.L., 2017, Evolutionary Nephrology. Kidney Int. Rep. 2(3): 302–317. [doi: 10.1016/j.ekir.2017.01.012].

Chou Y.H., Huang T.M. & Chu T.S., 2017, Novel insights into acute kidney injury-chronic kidney disease continuum and the role of renin-angiotensin system. J. Formos. Med. Assoc. 116(9): 652-659. [doi: 10.1016/j.jfma.2017.04.026].

Clarke N.E. & Turner A.J., 2012, Angiotensin-ConvertingEnzyme2: The first Decade. Int. J. Hypertens. 307315: 1-12. [doi: 10.1155/2012/307315].

Cui J., Qin L., Zhang J., Abrahimi P., Li H., Li G., Tietjen G.T., Tellides G., Pober J.S. & Saltzman W.M., 2017, Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nat. Commun. 8: 191-201 (p. 1-11). [doi: 10.1038/s41467-017-00297-x].

Currie G., Taylor A.H., Fujita T., Ohtsu H., Lindhardt M., Rossing P., Boesby L., Edwards N.C., Ferro C.J., Townend J.N., van den Meiracker A.H., Saklayen M.G., Oveisi S., Jardine A.G., Delles C., Preiss D.J. & Mark P.B., 2016, Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 17(1): 127-140 (p. 1-14). [doi: 10.1186/s12882-016-0337-0].

Dwivedi R.S., Herman J.G., McCaffrey T.A. & Raj D.S., 2011, Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int. 79(1): 23-32. [doi: 10.1038/ki.2010.335].

Dounousi E., Duni A., Leivaditis K., Vaios V., Eleftheriadis T. & Liakopoulos V., 2015, Improvements in the Management of Diabetic Nephropathy. Rev. Diabet. Stud. 12(1-2): 119–133. [doi: 10.1900/RDS.2015.12.119].

De Mello W.C., 2015, Chemical Communication between Heart Cells is Disrupted by Intracellular Renin and Angiotensin II: Implications for Heart Development and Disease. Front. Endocrinol. (Lausanne) 6: 72-77 (p. 1-6). [doi: 10.3389/fendo.2015.00072].

De Mello W.C., 2017, Local Renin Angiotensin Aldosterone Systems and Cardiovascular Diseases. Med. Clin. North Am. 101(1): 117-127. [doi: 10.1016/j.mcna.2016.08.017].

Doi S., Zou Y., Togao O., Pastor J.V., John G.B., Wang L., Shiizaki K., Gotschall R., Schiavi S., Yorioka N., Takahashi M., Boothman D.A., Kuro M., 2011, Klotho Inhibits Transforming Growth Factor-β1 (TGF-β1) Signaling and Suppresses Renal Fibrosis and Cancer Metastasis in Mice. J. Biol. Chem. 286(10): 8655–8665.[doi: 10.1074/jbc.M110.174037].

Dolomatov S.I., Zukow W.A., Novikov N.Y., 2012, The regulation of osmotic and ionic balance in fish reproduction and in the early stages of ontogeny. Russian Journal of Marine Biology 38(5): 365–374. [doi: org/10.1134/S1063074012050057].

Dressler G.R. & Patel S.R., 2015, Epigenetics in Kidney Development and Renal Disease. Transl. Res. 165(1): 166–176. [doi: 10.1016/j.trsl.2014.04.007].

Duarte J.D., Zineh I., Burkley B., Gong Y., Langaee T.Y., Turner S.T., Chapman A.B., Boerwinkle E., Gums J.G., Cooper-Dehoff R.M., Beitelshees A.L., Bailey K.R., Fillingim R.B., Kone B.C. & Johnson J.A., 2012, Effects of genetic variation in H3K79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide. J. Transl. Med. 10: 56-64 (p. 1-9). [doi: 10.1186/1479-5876-10-56].

Efimova O.A., Pendina A.A., Tikhonov A.V., Kuznetzova T.V. & Baranov V.S., 2012, DNA methylation - a major mechanism of human genome reprogramming and regulation. Medical Genetics 4(118): 10-18.

Ellis B., Li X.C., Miguel-Qin E., Gu V. & Zhuo J.L., 2012, Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney. Am J. Physiol. Regul. Integr. Comp. Physiol. 302(5): R494–R509. [doi: 10.1152/ajpregu.00487.2011].

Feraille E. & Dizin E., 2016, Coordinated Control of ENaC and Na+, K+-ATPase in Renal Collecting Duct. J. Am. Soc. Nephrol. 27(9): 2554-2563. [doi: 10.1681/ASN.2016020124].

Fish J. E., Yan M.S., Matouk C.C., Bernard R.S., Ho J.D., Gavryushova A., Srivastava D. & Marsden P.A., 2010, Hypoxic Repression of Endothelial Nitric-oxide Synthase Transcription Is Coupled with Eviction of Promoter Histones. J. Biol. Chem. 285(2): 810–826. [doi: 10.1074/jbc.M109.067868].

Foster D.R., Yee S., Bleske B.E., Carver P.L., Shea M.J., Menon, S.S., Ramachandran C., Welage L.S., Amidon G.L., 2009, Lack of interaction between the peptidomimetic substrates captopril and cephradine. J. Clin. Pharmacol. 49(3): 360-367. [doi: 10.1177/0091270008329554].

Friso S., Carvajal C.A., Fardella, C.E. & Olivieri O., 2015, Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl. Res. 165(1): 154-165. [doi: 10.1016/j.trsl.2014.06.007].

Ganai S.A., Ramadoss M. & Mahadevan V., 2016, Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr. Neuropharmacol. 14(1): 55-71.

Gong F., Chiu L.Y. & Miller K.M., 2016, Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genetics 12(9): e1006272-1006294 (p. 1-23). [doi: 10.1371/journal.pgen.1006272].

Guo W., Shan B., Klingsberg R.C., Qin X. & Lasky J.A., 2009, Abrogation of TGF-β1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(5): L864–L870. [doi: 10.1152/ajplung.00128.2009].

Gwathmey T.Y.M., Alzayadneh E.M., Pendergrass K.D. & Chappell M.C., 2012, Review: Novel roles of nuclear angiotensin receptors and signaling mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302(5): R518–R530. [doi: 10.1152/ajpregu.00525.2011].

Harshman L.A. & Zepeda-Orozco D., 2016, Genetic Considerations in Pediatric Chronic Kidney Disease. J. Pediatr. Genet. 5(1): 43–50. [doi: 10.1055/s-0035-1557111].

Harvey N.C., Lillycrop K.A., Garratt E., Sheppard A., McLean C., Burdge G., Slater-Jefferies J., Rodford J., Crozier S., Inskip H., Emerald B.S., Gale C.R., Hanson M., Gluckman P., Godfrey K. & Cyrus C., 2012, Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content. Calcif. Tissue Int. 90(2): 120–127. [doi: 10.1007/s00223-011-9554-5].

Hayashi K., Sasamura H., Nakamura M., Sakamaki Y., Azegami T., Oguchi H., Tokuyama H., Wakino S., Hayashi K. & Itoh H., 2015, Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int. 88(4): 745-753. [doi: 10.1038/ki.2015.178].

Hilliard S.A. & El-Dahr S.S., 2016, Epigenetics of Renal Development and Disease. Yale J. Biol. Med. 89(4): 565–573.

Hewitson T.D., Holt S.G., Tan S.J., Wigg B., Samuel C.S. & Smith E.R., 2017, Epigenetic Modifications to H3K9 in Renal Tubulointerstitial Cells after Unilateral Ureteric Obstruction and TGF-β1 Stimulation. Front. Pharmacol. 8: 307-321 (p. 1-15). [doi: 10.3389/fphar.2017.00307].

Hu Z., Zhuo X., Shi Y., Liu X., Yuan J., Li L. & Sun Y., 2014, Iodine deficiency up-regulates monocarboxylate transporter 8 expression of mouse thyroid gland. Chin. Med. J. (Engl.) 127(23): 4071-4076.

Jamal A., Man H.S.J. & Marsden P.A., 2012, Gene Regulation in the Vascular Endothelium: Why Epigenetics Is Important for the Kidney. Semin. Nephrol. 32(2): 176–184. [doi: 10.1016/j.semnephrol.2012.02.009].

Kato M., Dang V., Wang M., Park J.T., Deshpande S., Kadam S., Mardiros A., Zhan Y., Oettgen P., Putta S., Yuan H., Lanting L., Natarajan R., 2013, TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci. Signal. 6(278): ra43-73 (p. 1-31). [doi: 10.1126/scisignal.2003389].

Kawarazaki W. & Fujita T., 2016, The Role of Aldosterone in Obesity-Related Hypertension. Am. J. Hypertens. 29(4): 415–423. [doi: 10.1093/ajh/hpw003].

Khan S. & Jena G., 2014, Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem. Toxicol. 73: 127-139. [doi: 10.1016/j.fct.2014.08.010].

Kheirandish-Gozal L., Khalyfa A., Gozal D., Bhattacharjee R. & Wang Y., 2013, Endothelial Dysfunction in Children With Obstructive Sleep Apnea Is Associated With Epigenetic Changes in the eNOS Gene. Chest 143(4): 971–977. [doi: 10.1378/chest.12-2026].

Kobori H., Ichihara A., Miyashita Y., Hayashi M. & Saruta T., 1999, Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J. Endocrinol. 160(1): 43-47.

Kobori H., Kamiyama M., Harrison-Bernard L.M. & Navar L.G., 2013, Cardinal Role of the Intrarenal Renin-Angiotensin System in the Pathogenesis of Diabetic Nephropathy. J. Investig. Med. 61(2): 256–264. [doi: 10.231/JIM.0b013e31827c28bb].

Kobori H., Katsurada A., Miyata K., Ohashi N., Satou R., Saito T., Hagiwara Y., Miyashita K. & Navar L.G., 2008, Determination of plasma and urinary angiotensinogen levels in rodents by newly developed ELISA. Am. J. Physiol. Renal Physiol. 294(5): F1257–F1263. [doi: 10.1152/ajprenal.00588.2007].

Kone B.C., 2013, Epigenetics and the Control of the Collecting Duct Epithelial Sodium Channel. Semin. Nephrol. 33(4): 383–391. [doi: 10.1016/j.semnephrol.2013.05.010].

Köttgen A., Pattaro C., Böger C.A., Fuchsberger C., Olden M., Glazer N.L., Parsa A., Gao X., Yang Q., Smith A.V., O'Connell J.R., Li M., Schmidt H., Tanaka T., Isaacs A., Ketkar S., Hwang S.J., Johnson A.D., Dehghan A., Teumer A., Paré G., Atkinson E.J., Zeller T., Lohman K., Cornelis M.C., Probst-Hensch N.M., Kronenberg F., Tönjes A., Hayward C., Aspelund T., Eiriksdottir G., Launer L.J., Harris T.B., Rampersaud E., Mitchell B.D., Arking D.E., Boerwinkle E., Struchalin M., Cavalieri M., Singleton A., Giallauria F., Metter J., de Boer I.H., Haritunians T., Lumley T., Siscovick D., Psaty B.M., Zillikens M.C., Oostra B.A., Feitosa M., Province M., de Andrade M., Turner S.T., Schillert A., Ziegler A., Wild P.S., Schnabel R.B., Wilde S., Munzel T.F., Leak T.S., Illig T., Klopp N., Meisinger C., Wichmann H.E., Koenig W., Zgaga L., Zemunik T., Kolcic I., Minelli C., Hu F.B., Johansson A., Igl W., Zaboli G., Wild S.H., Wright A.F., Campbell H., Ellinghaus D., Schreiber S., Aulchenko Y.S, Felix J.F., Rivadeneira F., Uitterlinden A.G., Hofman A., Imboden M., Nitsch D., Brandstätter A., Kollerits B., Kedenko L., Mägi R., Stumvoll M., Kovacs P., Boban M., Campbell S., Endlich K., Völzke H., Kroemer H.K., Nauck M., Völker U., Polasek O., Vitart V., Badola S., Parker A.N., Ridker P.M., Kardia S.L., Blankenberg S., Liu Y., Curhan G.C., Franke A., Rochat T., Paulweber B., Prokopenko I., Wang W., Gudnason V., Shuldiner A.R., Coresh J., Schmidt R., Ferrucci L., Shlipak M.G., van Duijn C.M., Borecki I., Krämer B.K., Rudan I., Gyllensten U., Wilson J.F., Witteman J.C., Pramstaller P.P., Rettig R., Hastie N., Chasman D.I., Kao W.H., Heid I.M. & Fox C.S., 2010, Multiple New Loci Associated with Kidney Function and Chronic Kidney Disease: The CKDGen consortium. Nat. Genet. 42(5): 376–384. [doi: 10.1038/ng.568].

Kumar S., Pamulapati H. & Tikoo K., 2016, Fatty acid induced metabolic memory involves alterations in renal histone H3K36me2 and H3K27me3. Mol. Cell. Endocrinol. 422: 233-242. [doi: 10.1016/j.mce.2015.12.019].

Kuo C.-C., Moon K., Thayer K.A. & Navas-Acien, A., 2013, Environmental Chemicals and Type 2 Diabetes: An Updated Systematic Review of the Epidemiologic Evidence. Curr. Diab. Rep. 13(6): 831–849. [doi: 10.1007/s11892-013-0432-6].

Kuroda A., Rauch T.A., Todorov I., Ku H.T., Al-Abdullah I.H., Kandeel F., Mullen Y., Pfeifer G.P. & Ferreri K., 2009, Insulin Gene Expression Is Regulated by DNA Methylation. PLoS One 4(9): e6953-6961 (p. 1-9). [doi: 10.1371/journal.pone.0006953].

Lee-Son K. & Jetton J.G., 2016, AKI and Genetics: Evolving Concepts in the Genetics of Acute Kidney Injury: Implications for Pediatric AKI. J. Pediatr. Genet. 5(1): 61–68. [doi: 10.1055/s-0035-1557112].

Leow M.K., 2016, A Review of the Phenomenon of Hysteresis in the Hypothalamus–Pituitary–Thyroid Axis. Front. Endocrinol. (Lausanne) 7: 64-71 (p. 1-8). [doi: 10.3389/fendo.2016.00064].

Lesse A., Rether K., Gröger N., Braun K. & Bock J., 2017, Chronic Postnatal Stress Induces Depressive-like Behavior in Male Mice and Programs second-Hit Stress-Induced Gene Expression Patterns of OxtR and AvpR1a in Adulthood. Mol. Neurobiol. 54(6): 4813-4819. [doi: 10.1007/s12035-016-0043-8].

Liang M., Cowley A.W., Mattson D.L., Kotchen T.A. & Liu Y., 2013, Epigenomics of Hypertension. Semin. Nephrol. 33(4): 392–399. [doi: 10.1016/j.semnephrol.2013.05.011].

Lin C.L., Lee P.H., Hsu Y.C., Lei C.C., Ko J.Y., Chuang P.C., Huang Y.T., Wang S.Y., Wu S.L., Chen Y.S., Chiang W.C., Reiser J. & Wang F.S., 2014, MicroRNA-29a Promotion of Nephrin Acetylation Ameliorates Hyperglycemia-Induced Podocyte Dysfunction. J. Am. Soc. Nephrol. 25(8): 1698–1709. [doi: 10.1681/ASN.2013050527].

Lister R., Pelizzola M., Dowen R.H., Hawkins R.D., Hon G., Tonti-Filippini J., Nery J.R., Lee L., Ye Z., Ngo Q.M., Edsall L., Antosiewicz-Bourget J., Stewart R., Ruotti V., Millar A.H., Thomson J.A., Ren B. & Ecker J.R., 2009, Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: 315-322. [doi: 10.1038/nature08514].

Liu J., Wei Q., Guo C., Dong G., Liu Y., Tang C. & Dong Z., 2017, Hypoxia, HIF, and Associated Signaling Networks in Chronic Kidney Disease. Int. J. Mol. Sci. 18(5): 950-966 (p. 1-17). [doi: 10.3390/ijms18050950].

Liu N., He S., Ma L., Ponnusamy M., Tang J., Tolbert E., Bayliss G., Zhao T.C., Yan H. & Zhuang S., 2013, Blocking the Class I Histone Deacetylase Ameliorates Renal Fibrosis and Inhibits Renal Fibroblast Activation via Modulating TGF-Beta and EGFR Signaling. PLoS One 8(1): e54001-54012 (p. 1-12). [doi: 10.1371/journal.pone.0054001].

Liu R., Lee K. & He J.C., 2015, Genetics and Epigenetics of Diabetic Nephropathy. Kidney Dis. (Basel) 1(1): 42–51. [doi: 10.1159/000381796].

Liu X., Zheng N., Shi Y.N., Yuan J. & Li L., 2014, Thyroid hormone induced angiogenesis through the integrin αvβ3/protein kinase D/histone deacetylase 5 signaling pathway. J. Mol. Endocrinol. 52(3): 245-254. [doi: 10.1530/JME-13-0252].

Lu Z., Liu N. & Wang F., 2017, Epigenetic Regulations in Diabetic Nephropathy. J. Diabetes Res. 780505: 1-6. [doi: 10.1155/2017/7805058].

Ma R.C.W., 2016, Genetics of cardiovascular and renal complications in diabetes. J. Diabetes Investig. 7(2): 139–154. [doi: 10.1111/jdi.12391].

Macconi D., Remuzzi G. & Benigni A., 2014, Key fibrogenic mediators: old players. Renin–angiotensin system. Kidney Int. Suppl. 4(1): 58–64. [doi: 10.1038/kisup.2014.11].

MacManes M.D., 2017, Severe acute dehydration in a desert rodent elicits a transcriptional response that effectively prevents kidney injury. Am. J. Physiol. Renal Physiol. 313(2): F262-F272. [doi: 10.1152/ajprenal.00067.2017].

Marques F.Z., Nelson E., Chu P.Y., Horlock D., Fiedler A., Ziemann M., Tan J.K., Kuruppu S., Rajapakse N.W., El-Osta A., Mackay C.R. & Kaye D.M., 2017, High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation. 135(10): 964-977. [doi: 10.1161/CIRCULATIONAHA.116.024545].

Marumo T., Hishikawa K., Yoshikawa M. & Fujita T., 2008, Epigenetic Regulation of BMP7 in the Regenerative Response to Ischemia. J. Am. Soc. Nephrol. 19(7): 1311–1320. [doi: 10.1681/ASN.2007091040].

Marumo T., Yagi S., Kawarazaki W., Nishimoto M., Ayuzawa N., Watanabe, A., Ueda K., Hirahashi J., Hishikawa K., Sakurai H., Shiota K. & Fujita T., 2015, Diabetes Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney. J. Am. Soc. Nephrol. 26(10): 2388–2397. [doi: 10.1681/ASN.2014070665].

Matsusaka T., Niimura F., Shimizu A., Pastan I., Saito A., Kobori H., Nishiyama A. & Ichikawa I., 2012, Liver Angiotensinogen Is the Primary Source of Renal Angiotensin II. J. Am. Soc. Nephrol. 23(7): 1181–1189. [doi: 10.1681/ASN.2011121159].

Murgatroyd C., 2014, Epigenetic programming of neuroendocrine systems during early life. Exp. Physiol. 99(1): 62-65. [doi: 10.1113/expphysiol.2013.076141].

Nabzdyk C.S., Pradhan-Nabzdyk L. & LoGerfo F.W., 2017; RNAi therapy to the wall of arteries and veins: anatomical, physiologic, and pharmacological considerations. J. Transl. Med. 15: 164-174 (p. 1-11). [doi: 10.1186/s12967-017-1270-0].

Nangaku M., Hirakawa Y., Mimura I., Inagi R. & Tanaka T., 2017, Epigenetic Changes in the Acute Kidney Injury-to-Chronic Kidney Disease Transition. Nephron 137: 256–259. [doi: 10.1159/000476078].

Nathan D., Ingvarsdottir K., Sterner D.E., Bylebyl G.R., Dokmanovic M., Dorsey J.A., Whelan K.A., Krsmanovic M., Lane W.S., Meluh P.B., Johnson E.S. & Berger S.L., 2006, Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes & Development 20(8): 966–976. [doi: 10.1101/gad.1404206].

Nehme A. & Zibara K., 2017, Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection? Hypertension Research (6): 1–7. [doi: 10.1038/hr.2017.65].

Ohtani K., Vlachojannis G.J., Koyanagi M., Boeckel J.N., Urbich C., Farcas R., Bonig H., Marquez V.E., Zeiher A.M. & Dimmeler S., 2011, Epigenetic Regulation of Endothelial Lineage Committed Genes in Pro-Angiogenic Hematopoietic and Endothelial Progenitor Cells. Novelty and Significance. Circulation Research 109: 1219-1229. [doi: 10.1161/CIRCRESAHA.111.247304].

O'Leary R., Penrose H., Miyata K. & Satou R., 2016, Macrophage-derived IL-6 contributes to ANG II-mediated angiotensinogen stimulation in renal proximal tubular cells. Am. J. Physiol. Renal Physiol. 310(10): F1000–F1007. [doi: 10.1152/ajprenal.00482.2015].

Park E.-J. & Kwon T.-H., 2015, A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press. 13(1): 1–6. [doi: 10.5049/EBP.2015.13.1.1].

Perez-Perri J.I., Acevedo J.M. & Wappner P., 2011, Epigenetics: New Questions on the Response to Hypoxia. Int. J. Mol. Sci. 12(7): 4705–4721. [doi: 10.3390/ijms12074705].

Ponnaluri V.K.C., Ehrlich K.C., Zhang G., Lacey M., Johnston D., Pradhan S. & Ehrlich M., 2016, Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics 12(2): 123-138. [doi: 10.1080/15592294.2016.1265713].

Quarta C., Schneider R. & Tschӧp M.H., 2016, Epigenetic ON/OFF Switches for Obesity. Cell 164(3): 341-342. [doi: 10.1016/j.cell.2016.01.006].

Re A., Nanni S., Aiello A., Granata S., Colussi C., Campostrini G., Spallotta F., Mattiussi S., Pantisano V., D'Angelo C., Biroccio A., Rossini A., Barbuti A., DiFrancesco D., Trimarchi F., Pontecorvi A., Gaetano C. & Farsetti A., 2016, Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways. Endocrine 53(3): 681-688. [doi: 10.1007/s12020-015-0751-2].

Reddy M.A. & Natarajan R., 2015, Recent Developments in Epigenetics of Acute and Chronic Kidney Diseases. Kidney Int. 88(2): 250–261. [doi: 10.1038/ki.2015.148].

Reddy M.A., Park J.T. & Natarajan R., 2013, Epigenetic Modifications in the Pathogenesis of Diabetic Nephropathy. Semin. Nephrol. 33(4): 341–353. [doi: 10.1016/j.semnephrol.2013.05.006].

Reddy M.A., Sumanth P., Lanting L., Yuan H., Wang M., Mar D., Alpers C.E., Bomsztyk K. & Natarajan R., 2014, Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 85(2): 362–373. [doi: 10.1038/ki.2013.387].

Rodríguez-Romo R., Berman N., Gómez A., Bobadilla N.A., 2015, Epigenetic regulation in the acute kidney injury (AKI) to chronic kidney disease transition (CKD). Nephrology (Carlton) 20: 736–743. [doi: 10.1111/nep.12521].

Rossetto D., Avvakumov N. & Côté J., 2012, Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7(10): 1098–1108. [doi: 10.4161/epi.21975].

Ruiz-Hernandez A., Kuo C.C., Rentero-Garrido P., Tang W.Y., Redon J., Ordovas J.M., Navas-Acien A. & Tellez-Plaza M., 2015, Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin. Epigenetics 7(1): 55-78 (p. 1-24). [doi: 10.1186/s13148-015-0055-7].

Sasaki K., Doi S., Nakashima A., Irifuku T., Yamada K., Kokoroishi K., Ueno T., Doi T., Hida E., Arihiro K., Kohno N. & Masaki T., 2016, Inhibition of SET Domain–Containing Lysine Methyltransferase 7/9 Ameliorates Renal Fibrosis. J. Am. Soc. Nephrol. 27(1): 203–215. [doi: 10.1681/ASN.2014090850].

Satou R., Miyata K., Gonzalez-Villalobos R.A., Ingelfinger J.R., Navar L.G. & Kobori H., 2012, Interferon-γ biphasically regulates angiotensinogen expression via a JAK-STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells. FASEB J. 26(5): 1821–1830. [doi: 10.1096/fj.11-195198].

Saletore Y.& Chen-Kiang S. & Mason C.E., 2013, Novel RNA regulatory mechanisms revealed in the epitranscriptome. RNA Biol. 10(3): 342–346. [doi: 10.4161/rna.23812].

Sattarinezhad E., Panjehshahin M.R., Torabinezhad S., Kamali-Sarvestani E., Farjadian S., Pirsalami F. & Moezi L., 2017, Protective Effect of Edaravone Against Cyclosporine-Induced Chronic Nephropathy Through Antioxidant and Nitric Oxide Modulating Pathways in Rats. Iran. J. Med. Sci. 42(2): 170–178.

Schmidt Dellamea B., Bauermann Leitão C., Friedman R. & Canani L.H., 2014, Nitric oxide system and diabetic nephropathy. Diabetol. Metab. Syndr. 6: 17. [doi: 10.1186/1758-5996-6-17].

Sergeeva I.A., Hooijkaas I.B., Ruijter J.M., Van Der Made I., De Groot N.E., van de Werken H.J., Creemers E.E. & Christoffels V.M., 2016, Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development 143(12): 2135-2146. [doi: 10.1242/dev.132019].

Sergeeva I.A., Hooijkaas I.B., Van Der Made I., Jong W.M., Creemers E.E. & Christoffels V.M., 2013, A transgenic mouse model for the simultaneous monitoring of ANF and BNP gene activity during heart development and disease. Cardiovasc. Res. 101(1): 78-86. [doi: 10.1093/cvr/cvt228].

Shi M., Zhu J., Wang R., Chen X., Mi L., Walz T. & Springer T.A., 2011, Latent TGF-β structure and activation. Nature 474(7351): 343–349. [doi: 10.1038/nature10152].

Shiels P.G., McGuinness D., Eriksson M., Kooman J.P. & Stenvinkel P., 2017, The role of epigenetics in renal ageing. Nat. Rev. Nephrol. 13(8): 471-482. [doi: 10.1038/nrneph.2017.78].

Shirodkar A.V. & Marsden P.A., 2011, Epigenetics in cardiovascular disease. Curr. Opin. Cardiol. 26(3): 209–215. [doi: 10.1097/HCO.0b013e328345986e].

Shoji K., Tanaka T. & Nangaku M., 2014, Role of hypoxia in progressive chronic kidney disease and implications for therapy. Curr. Opin. Nephrol. Hypertens. 23(2): 161-168. [doi: 10.1097/01.mnh.0000441049.98664.6c].

Socco S., Bovee R.C., Palczewski M.B., Hickok J.R. & Thomas D.D., 2017, Epigenetics: The third pillar of nitric oxide signaling. Pharmacol. Res. 121: 52-58. [doi: 10.1016/j.phrs.2017.04.011].

Sun G., Cui W., Guo Q. & Miao L., 2014, Histone Lysine Methylation in Diabetic Nephropathy. J. Diabetes Res. 654148: 1-9. [doi: 10.1155/2014/654148].

Tain Y.-L. & Joles J.A., 2016, Reprogramming: A Preventive Strategy in Hypertension Focusing on the Kidney. Int. J. Mol. Sci. 17(1): 23. [doi: 10.3390/ijms17010023].

Tain Y.-L., Huang L.-T. & Hsu C.-N., 2017, Developmental Programming of Adult Disease: Reprogramming by Melatonin? Int. J. Mol. Sci. 18(2): 1-12, e426. [doi: 10.3390/ijms18020426].

Tain Y.L. & Hsu C.N., 2017, Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life? Int. J. Mol. Sci. 18(2): 381-396 (p. 1-16). [doi: 10.3390/ijms18020381].

Tang J. & Zhuang S., 2015, Epigenetics in acute kidney injury. Curr. Opin. Nephrol. Hypertens. 24(4): 351–358. [doi: 10.1097/MNH.0000000000000140].

Thomas M.C., 2016, Epigenetic Mechanisms in Diabetic Kidney Disease. Curr. Diab. Rep. 16: 31-40 (p. 1-10). [doi: 10.1007/s11892-016-0723-9]

Thoonen R., Sips P.Y., Bloch K.D. & Buys E.S., 2013, Pathophysiology of Hypertension in the Absence of Nitric Oxide/Cyclic GMP Signaling. Curr. Hypertens. Rep. 15(1): 47–58. [doi: 10.1007/s11906-012-0320-5].

Ueda K., Fujiki K., Shirahige K., Gomez-Sanchez C.E., Fujita T., Nangaku M. & Nagase M., 2014, Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor. Biochem. Biophys. Res. Commun. 445(1): 132–137. [doi: 10.1016/j.bbrc.2014.01.125].

Uwaezuoke S.N., Okafor H.U., Muoneke V.N., Odetunde O.I. & Odimegwu C.L., 2016, Chronic kidney disease in children and the role of epigenetics: Future therapeutic trajectories. Biomed. Rep. 5(6): 660–664. [doi: 10.3892/br.2016.781].

Uy N., Graf L., Lemley K. & Kaskel F., 2015, Effects of Gluten-Free, Dairy-Free Diet on Childhood Nephrotic Syndrome and Gut Microbiota. Pediatr. Res. 77(1-2): 252–255. [doi: 10.1038/pr.2014.159].

Van Beneden K., Mannaerts I., Pauwels M., Van den Branden C. & Van Grunsven L.A., 2013, HDAC inhibitors in experimental liver and kidney fibrosis. Fibrogenesis & Tissue Repair 6, 1: 1-14. [doi: 10.1186/1755-1536-6-1].

Van der Wijst M.G., Venkiteswaran M., Chen H., Xu G.L., Plösch T. & Rots M.G., 2015, Local chromatin microenvironment determines DNMT activity: from DNA DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics 10(8): 671–676. [doi: 10.1080/15592294.2015.1062204].

Vasudevan D., Bovee R.C. & Thomas D.D., 2016, Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide 59: 54-62. [doi: 10.1016/j.niox.2016.08.002].

Voon H.P.J. & Wong L.H., 2016, New players in heterochromatin silencing: histone variant H3.3 and the ATRX/DAXX chaperone. Nucleic Acids Res. 44(4): 1496–1501. [doi: 10.1093/nar/gkw012].

Wang Z., Zang C., Rosenfeld J.A., Schones D.E., Barski A., Cuddapah S., Cui K., Roh T.Y., Peng W., Zhang M.Q. & Zhao K., 2008, Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics 40(7): 897–903. [doi: 10.1038/ng.154]

Welch A. K., Lynch I.J., Gumz M.L., Cain B.D. & Wingo C.S., 2016, Aldosterone alters the chromatin structure of the murine endothelin-1 gene. Life Sci. 159: 121-126. [doi: 10.1016/j.lfs.2016.01.019].

Wing M.R., Ramezani A., Gill H.S., Devaney J.M. & Raj D.S., 2013, Epigenetics of Progression of Chronic Kidney Disease: Fact or Fantasy? Semin. Nephrol. 33(4): 363-374. [doi: 10.1016/j.semnephrol.2013.05.008].

Wise I.A. & Charchar F.J., 2016, Epigenetic Modifications in Essential Hypertension. Int. J. Mol. Sci. 17(4): 451. [doi: 10.3390/ijms17040451].

Witasp A., Van Craenenbroeck A.H., Shiels P.G., Ekström T.J., Stenvinkel P. & Nordfors L., 2017, Current epigenetic aspects the clinical kidney researcher should embrace. Clin. Sci. 131: 1649–1667. [doi: 10.1042/CS20160596].

Woroniecki R., Gaikwad A. & Susztak K., 2011, Fetal environment, epigenetics, and pediatric renal disease. Pediatr. Nephrol. 26(5): 705–711. [doi: 10.1007/s00467-010-1714-8].

Wu L., Shi A., Zhu D., Bo L., Zhong Y., Wang J., Xu Z. & Mao C., 2016, High sucrose intake during gestation increases angiotensin II type 1 receptor-mediated vascular contractility associated with epigenetic alterations in aged offspring rats. Peptides 86: 133-144. [doi: 10.1016/j.peptides.2016.11.002].

Xie G., Liu Y., Yao Q., Zheng R., Zhang L., Lin J., Guo Z., Du S., Ren C., Yuan Q. & Yuan Y., 2017, Hypoxia-induced angiotensin II by the lactate-chymase-dependent mechanism mediates radioresistance of hypoxic tumor cells. Sci. Rep. 7: 42396-424409 (p. 1-13). [doi: 10.1038/srep42396].

Yu Z., Kong Q. & Kone B.C., 2013, Aldosterone reprograms promoter methylation to regulate αENaC transcription in the collecting duct. Am. J. Physiol. Renal Physiol. 305(7): F1006–F1013. [doi: 10.1152/ajprenal.00407.2013].

Yuan H., Reddy M.A., Deshpande S., Jia Y., Park J.T., Lanting L.L., Jin W., Kato M., Xu Z.G., Das S. & Natarajan R., 2016, Epigenetic Histone Modifications Involved in Profibrotic Gene Regulation by 12/15-Lipoxygenase and Its Oxidized Lipid Products in Diabetic Nephropathy. Antioxid. Redox Signal. 24(7): 361–375. [doi: 10.1089/ars.2015.6372].

Yuan H., Reddy M.A., Sun G., Lanting L., Wang M., Kato M. & Natarajan R., 2013, Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells. Am. J. Physiol. Renal Physiol. 304(5): F601–F613. [doi: 10.1152/ajprenal.00523.2012].

Zager R.A. & Johnson A.C.M., 2010, Progressive histone alterations and proinflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury. Am. J. Physiol. Renal Physiol. 298(3): F827–F837. [doi: 10.1152/ajprenal.00683.2009].

Zager R.A., Johnson A.C.M. & Becker K., 2011, Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and “end-stage” kidney disease. Am. J. Physiol. Renal Physiol. 301(6): F1334–F1345. [doi: 10.1152/ajprenal.00431.2011].

Zama A.M. & Uzumcu M., 2010, Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective. Front. Neuroendocrinol. 31(4): 420–439. [doi: 10.1016/j.yfrne.2010.06.003].

Zeisberg M. & Zeisberg E.M., 2015, Precision renal medicine: a roadmap towards targeted kidney fibrosis therapies. Fibrogenesis & Tissue Repair 8: 16-21 (p. 1-6). [doi: 10.1186/s13069-015-0033-x].

Zhang D., Yu Z.Y., Cruz P., Kong Q., Li S. & Kone B.C., 2009, Epigenetics and the Control of Epithelial Sodium Channel Expression in Collecting Duct. Kidney Int. 75(3): 260–267. [doi: 10.1038/ki.2008.475].

Zhong Y., Chen E.Y., Liu R., Chuang P.Y., Mallipattu S.K., Tan C.M., Clark N.R., Deng Y., Klotman P.E., Ma'ayan A. & He J.C., 2013, Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase. J. Am. Soc. Nephrol. 24(5): 801–811. [doi: 10.1681/ASN.2012060590].

Ziller M.J., Gu H., Müller F., Donaghey J., Tsai L.T.Y., Kohlbacher O., De Jager P.L., Rosen E.D., Bennett D.A., Bernstein B.E., Gnirke A. & Meissner A., 2013, Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463): 477-481. [doi: 10.1038/nature12433].

Zununi V.S., Samadi N., Mostafidi E., Ardalan M. & Omidi Y., 2016, Genetics and Epigenetics of Chronic Allograft Dysfunction in Kidney Transplants. Iran. J. Kidney Dis. 10(1): 1-9.




Partnerzy platformy czasopism