Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Analytical signatures and proper actions
  • Home
  • /
  • Analytical signatures and proper actions
  1. Home /
  2. Archives /
  3. Vol 57, No 1 (March 2021) /
  4. Articles

Analytical signatures and proper actions

Authors

  • Noé Bárcenas https://orcid.org/0000-0002-3640-3763
  • Quitzeh Morales-Meléndez https://orcid.org/0000-0002-3515-8401

Keywords

Bordism invariance, Coarse index, Hilbert-Poincaré complexes

Abstract

We compare Mishchenko's definition of non-commutative signature for an oriented manifold with an orientation preserving proper action of a discrete, countable group $G$ with the (more analytical) counterpart defined by Higson and Roe in the series of articles ``Mapping surgery to analysis''. A generalization of the bordism invariance of the coarse index is also addressed.

References

O. Attie, Quasi-isometry classification of some manifolds of bunded geometry, K-theory 33 (2004), 277–299.

N. Higson and J. Roe, Mapping surgery to analysis I, K-theory 33 (2004), 277–299.

N. Higson and J. Roe, Mapping surgery to analysis II, K-theory 33 (2004), 301–324.

N. Higson and J. Roe, Mapping surgery to analysis III, K-theory 33 (2004), 301–324.

N. Higson and J. Roe Analytic K-homology, Oxford Science Publications, 2000.

S. Illman, Existence and uniqueness of equivariant triangulations of smooth proper Gmanifolds with some applications to equivariant Whitehead torsion, J. Reine Angew. Math. 524 (2000), 129–183.

G.G. Kasparov, The generalized index of elliptic operators, Functional Analysis and Its Applications 7 (1973), no. 3, 82–83.

G.G. Kasparov, Topological invariants of elliptic operators I: K-homology, Math. USSR Izvestiya 9 (1975), no. 4, 751–792.

G.G. Kasparov, The operator K-functor and extensions of C ∗ -algebras, Math. USSR Izvestija 16 (1981), no. 3, 513–572.

T. Korppi, Equivariant triangulations of differentiable and real-analytic manifolds with a properly discontinuous action, Annales Academi Acientiarum Fennic Matematica Dissertationes, number 141, Suomalainen Tiedeakatemia, Helsinki, 2005.

A.S. Mishchenko, The theory of almost algebraic Poincaré complexes and local combinatorial Hirzebruch formula, Acta Appl. Math. 68 (2001), no. 1–3, 5–37.

A.S. Mishchenko, Homotopy invariants of non-simply connected manifolds I. Rational invariants, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 501–514.

A.S. Mishchenko, Signature of manifolds with proper action of a discrete group and the Hirzebruch type formula, Conference: “Topology, Geometry, and Dynamics: Rokhlin Memorial”, Saint Petersburg, 2010.

R. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323.

J. Roe, Comparing analytical assembly maps, Quart. J. Math. 53 (2002), 241–248.

C. Wulff, Bordism invariance of the Coarse index, Proc. Amer. Math. Soc. 140 (2020), no. 8, 2693–2697.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-02-20

How to Cite

1.
BÁRCENAS, Noé and MORALES-MELÉNDEZ, Quitzeh. Analytical signatures and proper actions. Topological Methods in Nonlinear Analysis. Online. 20 February 2021. Vol. 57, no. 1, pp. 1 - 23. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 57, No 1 (March 2021)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop