Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Specification properties for non-autonomous discrete systems
  • Home
  • /
  • Specification properties for non-autonomous discrete systems
  1. Home /
  2. Archives /
  3. Vol 55, No 2 (June 2020) /
  4. Articles

Specification properties for non-autonomous discrete systems

Authors

  • Mohammad Salman https://orcid.org/0000-0002-7835-8446
  • Ruchi Das https://orcid.org/0000-0002-1889-9988

Keywords

Non-autonomous discrete system, induced systems, specification, topological mixing

Abstract

In this paper notions of strong specification property and quasi-weak specification property for non-autonomous discrete systems are introduced and studied. It is shown that these properties are dynamical properties and are preserved under finite product. It is proved that a $k$-periodic non-autonomous system on intervals having weak specification is Devaney chaotic. Moreover, it is shown that if the system has strong specification then the result is true in general. Specification properties of induced systems on hyperspaces and probability measures spaces are also studied. Examples/counterexamples are provided wherever necessary to support results obtained.

References

S. Bartoll, F. Martı́ nez Giménez, and A. Peris, The specification property for backward shifts, J. Difference Equ. Appl. 18 (2012), 599–605.

W. Bauer and K. Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math. 79 (1975), 81–92.

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397.

F.A.B. Coutinho, M.N. Burattini, L.F. Lopez and E. Massad, Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol. 68 (2006),2263–2282.

M. Dateyama, The almost weak specification property for ergodic group automorphisms of abelian groups, J. Math. Soc. Japan 42 (1990), 341–351.

P.J. Huber and E.M. Ronchetti, Robust Statistics, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., Hoboken, NJ, second ed., 2009.

A. Illanes and S.B. Nadler, Jr., Hyperspaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 216, Marcel Dekker, Inc., New York, 1999.

S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996),205–233.

M. Kulczycki, D. Kwietniak and P. Oprocha, On almost specification and average shadowing properties, Fund. Math. 224 (2014), 241–278.

T. Y. Li and J.A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985–992.

M. Mazur and P. Oprocha, Subshifts, rotations and the specification property, Topol. Methods Nonlinear Anal. 46 (2015), 799–812.

R. Memarbashi and H. Rasuli, Notes on the dynamics of nonautonomous discrete dynamical systems, J. Adv. Res. Dyn. Control Syst. 6 (2014), 8–17.

A. Miralles, M. Murillo-Arcila and M. Sanchis, Sensitive dependence for nonautonomous discrete dynamical systems, J. Math. Anal. Appl. 463 (2018), 268–275.

C.-E. Pfister and W.G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts, Nonlinearity, 18 (2005), 237–261.

M. Salman and R. Das, Multi-sensitivity and other stronger forms of sensitivity in nonautonomous discrete systems, Chaos Solitons Fractals 115 (2018), 341–348.

M. Salman and R. Das, Dynamics of weakly mixing nonautonomous systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 29 (2019), 1950123 (11 pp.).

I. Sánchez, M. Sanchis and H. Villanueva, Chaos in hyperspaces of nonautonomous discrete systems, Chaos Solitons Fractals 94 (2017), 68–74.

J.N. Sarkooh and F. Ghane, Specification and thermodynamic properties of nonautonomous dynamical systems, arXiv preprint arXiv:1712.06109, (2017).

S. Shah, R. Das and T. Das, Specification property for topological spaces, J. Dynam. Control Syst. 22 (2016), 615–622.

P. Sharma and M. Raghav, Dynamics of non-autonomous discrete dynamical systems, Topology Proc. 52 (2018), 45–59.

K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc. 190 (1974), 285–299.

D. Thompson, The irregular set for maps with the specification property has full topological pressure, Dyn. Syst. 25 (2010), 25–51.

C. Tian and G. Chen, Chaos of a sequence of maps in a metric space, Chaos Solitons Fractals 28 (2006), 1067–1075.

R. Vasisht and R. Das, On stronger forms of sensitivity in non-autonomous systems, Taiwanese J. Math. 22 (2018), 1139–1159.

Y. Zhang, S. Gao and Y. Liu, Analysis of a nonautonomous model for migratory birds with saturation incidence rate, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1659–1672.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2020-05-30

How to Cite

1.
SALMAN, Mohammad and DAS, Ruchi. Specification properties for non-autonomous discrete systems. Topological Methods in Nonlinear Analysis. Online. 30 May 2020. Vol. 55, no. 2, pp. 475 - 491. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 55, No 2 (June 2020)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop