Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On critical pseudo-relativistic Hartree equation with potential well
  • Strona domowa
  • /
  • On critical pseudo-relativistic Hartree equation with potential well
  1. Strona domowa /
  2. Archiwum /
  3. Vol 55, No 1 (March 2020) /
  4. Articles

On critical pseudo-relativistic Hartree equation with potential well

Autor

  • Yu Zheng
  • Minbo Yang
  • Zifei Shen

Słowa kluczowe

Pseudo-relativistic Hartree equation, Brezis-Nirenberg problem, Hardy-Littlewood-Sobolev inequality, critical exponent, potential well

Abstrakt

The aim of this paper is to investigate the existence and asymptotic behavior of the solutions for the critical pseudo-relativistic Hartree equation $$ \sqrt{-\Delta+m^{2}}u+(\beta V(x)-\lambda)u =\bigg(\int_{\mathbb{R}^{N}}\frac{|u(z)|^{2_{\mu}^{\ast}}}{|x-z|^{\mu}}dz\bigg)|u| ^{2_{\mu}^{\ast}-2}u $$% for $\mathbb{R}^{N}$, where $m, \lambda, \beta\in\mathbb{R}^+$, $0< \mu< N$, $N\geq3$, $2_{\mu}^{\ast}=({2N-\mu})/({N-1})$ plays the role of critical exponent due to the Hardy-Littlewood-Sobolev inequality. By transforming the nonlocal problem into a local one via the Dirichlet-to-Neumann map, we are able to obtain the existence of the solutions by variational methods. Suppose that $0< \lambda< \lambda_{1}(\Omega)$ with $\lambda_{1}(\Omega)$ the first eigenvalue and the parameter $\beta$ is large enough, we can prove the existence of ground state solutions. Furthermore, for any sequences $\beta_{n}\rightarrow\infty$, we can show that the ground state solutions $\{u_{n}\}$ converges to a solution of $$ \sqrt{-\Delta+m^{2}}u-\lambda u= \bigg(\int_{\Omega}\frac{|u(z)|^{2_{\mu}^{\ast}}}{|x-z|^{\mu}}dz\bigg) |u|^{2_{\mu}^{\ast}-2}u \quad \mbox{in } \Omega, $$ where $\Omega :=\mbox{int} V^{-1}(0)$ is a nonempty bounded set with smooth boundary. By the way we also establish the existence and nonexistence results for the ground state solutions of the problems set on bounded domain.

Bibliografia

C.O. Alves, D. Cassani, C. Tarsi and M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in R2 , J. Differential Equations 261 (2016), 1933–1972.

C.O. Alves, F. Gao, M. Squassina and M. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations 263 (2017), 3943–3988.

C.O. Alves, A.B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations. 55 (2016), 28 pp.

A. Ambrosetti and A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, Cambridge Studies in Advanced Mathematics, vol. 104, Cambridge University Press, Cambridge, 2007.

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349–381.

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133–6162.

T. Bartsch, A. Pankov and Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math. 3 (2001), 549–569.

T. Bartsch and Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys. 51 (2000), 366–384.

H. Brézis and T. Kato, Remarks on the Schrödinger operator with regular complex potentials, J. Math. Pures Appl. 58 (1979), 137–151.

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 (1983), 437–477.

Y. Cho and T. Ozawa, On the semi-relativistic Hartree-type equation, SIAM J. Math. Anal. 38 (2006), 1060–1074.

S. Cingolani, M. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys. 63 (2012), 233–248.

S. Cingolani and S. Secchi, Semiclassical analysis for pseudo-relativistic Hartree equations, J. Differential Equations 258 (2015), 4156–4179.

S. Cingolani and S. Secchi, Ground states for the pseudo-relativistic Hartree equation with external potential, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), 73–90.

M. Clapp and Y. Ding, Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys. 55 (2004), 592–605.

V. Coti Zelati and M. Nolasco, Ground states for pseudo–relativistic Hartree equations of critical type, Rev. Mat. Iberoam. 29 (2013), 1421–1436.

V. Coti Zelati and M. Nolasco, Existence of ground states for nonlinear pseudo–relativistic Schrödinger equations, Rend. Lincei Mat. Appl. 22 (2011), 51–72.

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 (2007), 500–545.

J. Escobar, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37 (1988), 687–698

J. Fröhlich, B. Lars, G. Jonsson and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys. 274 (2007), 1–30.

J. Fröhlich and E. Lenzmann, Blow up for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math. 60 (2007), 1691–1705.

J. Fröhlich and E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Équations aux Dérivées Partielles. 60 (2004), 1–26.

F. Gao, E. da Silva, M. Yang and J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proc. Roy. Soc. Edinburgh Sect. A, DOI:10.1017/prm.2018.13.

F. Gao and M. Yang, On the Brézis–Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math. 61 (2018), 1219–1242.

E. Lenzmann, Uniqueness of ground states for pseudo-relativistic Hartree equations, Anal. PDE 2 (2009), 1–27.

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom. 10 (2007), 43–64.

M. Lewin and E. Lenzmann, On singularity formation for the L2 –critical boson star equation, Nonlinearity 24 (2011), 3515–3540.

E. Lieb and M. Loss, Analysis, Gradute Studies in Mathematics, Amer. Math. Soc., Providence, Rhode Island, 2001.

V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equation, Trans. Amer. Math. Soc. 367 (2015), 6557–6579.

D. Mugnai, Pseudorelativistic Hartree equation with general nonlinearity: existence, nonexistence and variational identities, Adv. Nonlinear Stud. 13 (2013), 799–823.

M. Niu and Z. Tang, Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth, Discrete Contin. Dyn. Syst. 37 (2017), 3963–3987.

R. Servadei and E. Valdinoci, The Brézis–Nirenberg result for the fractional laplacian, Trans. Amer. Math. Soc. 367 (2015), 67–102.

Z. Shen, F. Gao and M. Yang, Ground states for nonlinear fractional Choquard equations with general nonlinearities, Math. Methods Appl. Sci. 39 (2016), 4082–4098.

Z. Shen, F. Gao and M. Yang, On the critical Choquard equation with potential well, Discrete Contin. Dyn. Syst. A 7 (2018), 3567–3593.

J. Tan, The Brézis–Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 42 (2011), 21–41.

M. Willem, Minimax Theorems, Progress in Nonlinear, Differential Equations and their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2020-03-04

Jak cytować

1.
ZHENG, Yu, YANG, Minbo & SHEN, Zifei. On critical pseudo-relativistic Hartree equation with potential well. Topological Methods in Nonlinear Analysis [online]. 4 marzec 2020, T. 55, nr 1, s. 185–226. [udostępniono 3.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 55, No 1 (March 2020)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa