Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Nonlinear vector Duffing inclusions with no growth restriction on the orientor field
  • Home
  • /
  • Nonlinear vector Duffing inclusions with no growth restriction on the orientor field
  1. Home /
  2. Archives /
  3. Vol 54, No 1 (September 2019) /
  4. Articles

Nonlinear vector Duffing inclusions with no growth restriction on the orientor field

Authors

  • Nikolaos S. Papageorgiou
  • Calogero Vetro https://orcid.org/0000-0001-5836-6847
  • Francesca Vetro https://orcid.org/0000-0001-7448-5299

Keywords

Duffing system, extremal solutions, nonlinear operator of monotone type, strong relaxations

Abstract

We consider nonlinear multivalued Dirichlet Duffing systems. We do not impose any growth condition on the multivalued perturbation. Using tools from the theory of nonlinear operators of monotone type, we prove existence theorems for the convex and the nonconvex problems. Also we show the existence of extremal trajectories and show that such solutions are $C_0^1(T,\mathbb{R}^N)$-dense in the solution set of the convex problem (strong relaxation theorem).

References

J. Francu̇, Monotone operators. A survey directed to applications to differential equations, Appl. Math. 35 (1990), 257–301.

M. Galewski, On the Dirichlet problem for a Duffing type equation, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), no. 15, 1–12.

L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis, Ser. Math. Anal. Appl., vol. 9, Chapman and Hall/CRC Press, Boca Raton, Florida, 2006.

L. Gasiński and N.S. Papageorgiou, Exercises in Analysis, Part 1, Problem Books in Mathematics, Springer, Cham, 2014.

L. Gasiński and N.S. Papageorgiou, Exercises in Analysis, Part 2, Problem Books in Mathematics, Springer, Cham, 2016.

P. Hartman, On boundary value problems for systems of ordinary nonlinear second order differential equations, Trans. Amer. Math. Soc. 96 (1960), 493–509.

P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.

S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. II. Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

P. Kalita and P.M. Kowalski, On multivalued Duffing equation, J. Math. Anal. Appl. 462 (2018), 1130–1147.

P.M. Kowalski, Well-posed Dirichlet problems pertaining to the Duffing equation, Electron. J. Qual. Theory Differ. Equ. 2014 (2014), no. 59, 1–15.

R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc. 37 (2000), 665–685.

N.S. Papageorgiou, C. Vetro and F. Vetro, Extremal solutions and strong relaxation for nonlinear multivalued systems with maximal monotone terms, J. Math. Anal. Appl. 461 (2018), 401–421.

N.S. Papageorgiou, C. Vetro and F. Vetro, Nonlinear multivalued Duffing systems, J. Math. Anal. Appl. 468 (2018), 376–390.

P. Tomiczek, Remark on Duffing equation with Dirichlet boundary condition, Electron. J. Differential Equations 2007 (2007), no. 81, 1–3.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-07-13

How to Cite

1.
PAPAGEORGIOU, Nikolaos S., VETRO, Calogero and VETRO, Francesca. Nonlinear vector Duffing inclusions with no growth restriction on the orientor field. Topological Methods in Nonlinear Analysis. Online. 13 July 2019. Vol. 54, no. 1, pp. 257 - 274. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 54, No 1 (September 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop