Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Global secondary bifurcation, symmetry breaking and period-doubling
  • Home
  • /
  • Global secondary bifurcation, symmetry breaking and period-doubling
  1. Home /
  2. Archives /
  3. Vol 53, No 2 (June 2019) /
  4. Articles

Global secondary bifurcation, symmetry breaking and period-doubling

Authors

  • Rainer Mandel https://orcid.org/0000-0003-3864-6360

Keywords

Secondary bifurcation, global bifurcation, symmetry breaking, period-doubling bifurcation, Lugiato--Lefever equation

Abstract

In this paper we provide a criterion for global secondary bifurcation via symmetry breaking. As an application, the occurrence of period-doubling bifurcations for the Lugiato-Lefever equation is proved.

References

A. Ambrosetti and A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, Cambridge Studies in Advanced Mathematics, vol. 104, Cambridge University Press, Cambridge, 2007.

T. Bartsch, E.N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations 37 (2010), 345–361.

T. Bartsch, R. Tian and Z.-Q. Wang, Bifurcations for a coupled Schrödinger system with multiple components, Z. Angew. Math. Phys. 66 (2015), no. 5, 2109–2123.

L. Bauer, H.B. Keller and E.L. Reiss, Multiple eigenvalues lead to secondary bifurcation 17 (1975), 101–122.

R. Böhme, Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z. 127 (1972), 105–126.

J. Bracho, M. Clapp and W. Marzantowicz, Symmetry breaking solutions of nonlinear elliptic systems, Topol. Methods Nonlinear Anal. 26 (2005), 189–201.

G. Cerami, Symmetry breaking for a class of semilinear elliptic problems, Nonlinear Anal. 10 (1986), 1–14.

C.V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differential Equations 54 (1984), no. 3, 429–437.

M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321–340.

E.N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1973/74), 1069–1076.

E.N. Dancer, Breaking of symmetries for forced equations, Math. Ann. 262 (1983), no. 4, 473–486.

E.N. Dancer, Global breaking of symmetry of positive solutions on two-dimensional annuli, Differential Integral Equations 5 (1992), no. 4, 903–913.

K. Deimling, Nonlinear functional analysis, Springer–Verlag, Berlin, 1985.

B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243.

H. Kielhöfer, Bifurcation Theory, Applied Mathematical Sciences, vol. 156, second ed., Springer, New York, 2012.

M.A. Krasnosel’skiı̆, Topological Methods in the Theory of NonlinearIintegral Equations, The Macmillan Co., New York, 1964.

K. Kuto, T. Mori, T. Tsujikawa and S. Yotsutani, Secondary bifurcation for a nonlocal Allen–Cahn equation, J. Differential Equations 263 (2017), no. 5, 2687–2714.

S.-S. Lin, On non-radially symmetric bifurcation in the annulus, J. Differential Equations 80 (1989), no. 2, 251–279.

L.A. Lugiato and R. Lefever, Spatial dissipative structures in passive optical systems, Phys. Rev. Lett. 58, no. 21, 2209–2211.

R. Mandel, Grundzustände, Verzweigungen und singuläre Lösungen nichtlinearer Schrödingersysteme, Karlsruhe Institute of Technology (KIT), 2013.

R. Mandel and W. Reichel, A priori bounds and global bifurcation results for frequency combs modeled by the Lugiato–Lefever equation, SIAM J. Appl. Math. 77 (2017), 315–345.

A. Marino, La biforcazione nel caso variazionale, Confer. Sem. Mat. Univ. Bari 132 (1973), pp. 14.

J. Mawhin, Leray–Schauder degree: a half century of extensions and applications, Topol. Methods Nonlinear Anal. 14 (1999), no. 2, 195–228.

M. Miyamoto, Non-existence of a secondary bifurcation point for a semilinear elliptic problem in the presence of symmetry, J. Math. Anal. Appl. 357 (2009), 89–97.

P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.

J. Smoller and A.G. Wasserman, Bifurcation and symmetry-breaking, Invent. Math. 100 (1990), no. 1, 63–95.

P.N. Srikanth, Symmetry breaking for a class of semilinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), no. 2, 107–112.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-05-10

How to Cite

1.
MANDEL, Rainer. Global secondary bifurcation, symmetry breaking and period-doubling. Topological Methods in Nonlinear Analysis. Online. 10 May 2019. Vol. 53, no. 2, pp. 779 - 800. [Accessed 3 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 53, No 2 (June 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop