Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Zero-dimensional compact metrizable spaces as attractors of generalized iterated function systems
  • Home
  • /
  • Zero-dimensional compact metrizable spaces as attractors of generalized iterated function systems
  1. Home /
  2. Archives /
  3. Vol 53, No 1 (March 2019) /
  4. Articles

Zero-dimensional compact metrizable spaces as attractors of generalized iterated function systems

Authors

  • Filip Strobin
  • Łukasz Maślanka

Keywords

Iterated function systems, generalized iterated function systems, fractals, generalized fixed points, scattered spaces, Cantor-Bendixson derivative, $0$-dimensional spaces

Abstract

R.\ Miculescu and A.\ Mihail in 2008 introduced the concept of a \emph{generalized iterated function system} (GIFS in short), a particular extension of the classical IFS. The idea is that, instead of families of selfmaps of a metric space $X$, GIFSs consist of maps defined on a finite Cartesian $m$-th power $X^m$ with values in $X$ (in such a case we say that a GIFS is \emph{of order} $m$). It turned out that a great part of the classical Hutchinson theory has natural counterpart in this GIFSs' framework. On the other hand, there are known only few examples of fractal sets which are generated by GIFSs, but which are not IFSs' attractors. In the paper we study $0$-dimensional compact metrizable spaces from the perspective of GIFSs' theory. Such investigations for classical IFSs have been undertaken in the last several years, for example by T.\ Banakh, E.\ D'Aniello, M.\ Nowak, T.H. Steele and F.\ Strobin. We prove that each such space $X$ is homeomorphic to the attractor of some GIFS on the real line. Moreover, we prove that $X$ can be embedded into the real line $\R$ as {the attractor of some} GIFS of order $m$ and (in the same time) a nonattractor of any GIFS of order $m-1$, as well as it can be embedded as a nonattractor of any GIFS. Then we show that a relatively simple modifications of $X$ deliver spaces whose each connected component is ``big'' and which are GIFS's attractors not homeomorphic with IFS's attractors. Finally, we use obtained results to show that a generic compact subset of a Hilbert space is not the attractor of any Banach GIFS.

References

R. Balka and A. Máthé, Generalized Hausdorff measure for generic compact sets, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 2, 797–804.

T. Banakh, W. Kubiś, M. Nowak, N. Novosad and F. Strobin, Contractive function systems, their attractors and metrization, Topol. Methods Nonlinear Anal. 46, no. 2, 1029–1066.

T. Banakh, M. Nowak and F. Strobin, Detecting topological and Banach fractals among zero-dimensional spaces, Topology Appl. 196 A (2015), 22–30.

T. Banakh, M. Nowak and F. Strobin, Embedding fractals in Banach, Hilbert or Euclidean spaces, submitted, arXive: 1806.08075.

M.F. Barnsley, Fractals Everywhere, Academic Press Professional, Boston, MA, 1993.

Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Amer. Math. Soc., Providence, RI, 2000.

F. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 27–35.

S. Crovisier and M. Rams, IFS attractors and Cantor sets, Topology and Appl. 153 (2006), 1849–1859.

E. D’Aniello, Non-self-similar sets in [0, 1]N of arbitrary dimension, J. Math. Anal. Appl. 456 (2017), no. 2, 1123–1128.

E. D’Aniello and T.H. Steele, Attractors for iterated function systems, J. Fractal Geom. 3 (2016), no 2, 95–117.

E. D’Aniello and T.H. Steele, Attractors for iterated function schemes on [0, 1]N are exceptional, J. Math. Anal. Appl. 541 (2015), no. 1, 537–541.

E. DAniello and T.H. Steele, Attractors for classes of iterated function systems, European J. Math. (2018), https://doi.org/10.1007/s40879-018-0280-7.

D. Dumitru, L. Ioana, R.C. Sfetcu and F. Strobin, Topological version of generalized (infinite) iterated function systems, Chaos Solitons Fractals 71 (2015), 78–90.

M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74–79.

R. Engelking, General Topology, Monografie Matematyczne, Tom 60 [Mathematical Monographs, Vol. 60], PWN–Polish Scientific Publishers, Warsaw, 1977, 626 pp.

M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), 381–414.

J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 3 (1981), no. 5, 713–747.

A. Kameyama, Distances on topological self-similar sets and the kneading determinants, J. Math. Kyoto Univ. 40 (2000), no. 4, 601–672.

A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer–Verlag, New York, 1995.

K. Kuratowski, Topology, Vol. II, new edition, revised and augmented, trnsl. from the French by A. Kirkor, Academic Press, New York, 1968.

J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. 127 (1975), 68 pp.

S. Mazurkiewicz, W. Sierpiński, Contribution a la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17–27.

R. Miculescu and A. Mihail, Applications of Fixed Point Theorems in the Theory of Generalized IFS, Fixed Point Theory Appl., Vol. 2008, Article ID 312876, doi:10.1155/2008/312876.

R. Miculescu and A. Mihail, Generalized IFSs on Noncompact Spaces, Fixed Point Theory Appl., Vol. 2010, Article ID 584215, doi:10.1155/2010/584215.

R. Miculescu and A. Mihail, On a question of A. Kameyama concerning self-similar metrics, J. Math. Anal. Appl. 422 (2015), no. 1, 265–271.

A. Mihail, Recurrent iterated function systems, Rev. Roumaine Math. Pures Appl. 53 (2008), no. 1, 43–53.

A. Mihail, A topological version of iterated function systems, An. Ştiinţ. Univ. Al. I. Cuza. Iaşi Mat. (S.N.), Tom LVIII (2012), 105–120.

M. Nowak, Topological classification of scattered IFS-attractors, Topology Appl. 160 (2013), no. 14, 1889–1901.

N. Secelean, Generalized iterated function systems on the space l∞ (X), J. Math. Anal. Appl. 410 (2014), no. 2, 847–858.

F. Strobin, Attractors of GIFSs that are not attractors of IFSs, J. Math. Anal. Appl. 422 (2015), no. 1, 99–108.

F. Strobin and J. Swaczyna, On a certain generalisation of the iterated function system, Bull. Aust. Math. Soc. 87 (2013), no. 1, 37–54.

F. Strobin, and J. Swaczyna, A code space for a generalized IFS, Fixed Point Theory 17 (2016), no. 2, 477–494.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-01-12

How to Cite

1.
STROBIN, Filip and MAŚLANKA, Łukasz. Zero-dimensional compact metrizable spaces as attractors of generalized iterated function systems. Topological Methods in Nonlinear Analysis. Online. 12 January 2019. Vol. 53, no. 1, pp. 363 - 403. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 53, No 1 (March 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop