### Strong solutions in $L^2$ framework for fluid-rigid body interaction problem. Mixed case

#### Abstract

#### Keywords

#### References

N. Chemetov and Š. Nečasová, The motion of the rigid body in the viscous fluid including collisions. Global solvability result, Nonlinear Anal. Real World Appl. 34 (2017), 416–445.

C. Conca, J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (2000), 1019–1042.

B. Desjardins and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal. 146 (1999), 59–71.

B. Desjardins and M.J. Esteban, On weak solutions for fluid-rigid structure interaction: Compressible and incompressible models, Comm. Partial Differential Equations 25 (2000), 1399–1413.

G.P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics, Vol. 1, (Friedlander, D. Serre, ed.), Elsevier, 2002.

D. Gérard-Varet and M. Hillairet, Existence of weak solutions up to collision for viscous fluid-solid systems with slip, Comm. Pure Appl. Math. 67 (2014), no. 12, 2022–2075.

D. Gérard-Varet, M. Hillairet and C. Wang, The influence of boundary conditions on the contact problem in a3D Navier–Stokes flow, J. Math. Pures Appl. (9) 103 (2015), no. 1, 1–38.

M.D. Gunzburger, H. Lee and G. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (2000), no. 3, 219–266.

T.I. Hesla, Collision of smooth bodies in a viscous fluid: A mathematical investigation, PhD Thesis, Minnesota, 2005.

M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations 32 (2007), no. 7–9, 1345–1371.

K.-H. Hoffmann and V.N. Starovoitov, On a motion of a solid body in a viscous fluid. Two dimensional case, Adv. Math. Sci. Appl. 9 (1999), 633–648.

A. Inoue and M. Wakimoto, On existence of solutions of the Navier–Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) , no. 2, 303–319.

T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246–274.

T. Kato, Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya Math. J. 19 (1961), 93–125.

J. Neustupa and P. Penel, Existence of a weak solution to the Navier–Stokes equation with Navier’s boundary condition around striking bodies, Comptes Rendus Mathematique 347 (2009), no. 11–12, 685–690.

J. Neustupa and P. Penel, A Weak solvability of the Navier–Stokes equation with Navier’s boundary condition around a ball striking the wall, Advances in Mathematical Fluid Mechanics: Dedicated to Giovanni Paolo Galdi, Springer–Verlag Berlin, 2010, pp. 385–408.

Y. Shibata and R. Shimada, On a generalized resolvent estimate for the Stokes system with Robin boundary condition, J. Math. Soc. Japan 59 (2007), no. 2, 469–519.

T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations 8 (2003), no. 12, 1499–1532.

T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech. 6 (2004), no. 1, 53–77.

C. Wang, Strong solutions for the fluid-solid systems in a 2D domain, Asymptot. Anal. 89 (2014), no. 3–4, 263–306.

### Refbacks

- There are currently no refbacks.