Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Dynamics of the BBM equation with a distribution force in low regularity spaces
  • Home
  • /
  • Dynamics of the BBM equation with a distribution force in low regularity spaces
  1. Home /
  2. Archives /
  3. Vol 51, No 1 (March 2018) /
  4. Articles

Dynamics of the BBM equation with a distribution force in low regularity spaces

Authors

  • Ming Wang
  • Anping Liu

Keywords

Global attractor, Benjamin-Bona-Mahony equation, low regularity

Abstract

The Benjamin-Bona-Mahony equation with a distribution force on torus is studied in low regularity spaces. The global well-posedness and the existence of a global attractor in $\dot{H}^{s,p}(\mathbb{T})$ are proved.

References

J. Arrieta, A.N. Carvalho and J.K. Hale, A damped hyperbolic equation with critical exponent, Commun. Partial Differential Equations 17 (1992), 841–866.

J.M. Arrieta, J.W. Cholewa, T. Dlotko, A. Rodrı́guez-Bernal, Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains, Nonlinear Anal. Theor. 56 (2004), 515–554.

J. Avrin, The generalized Benjamin–Bona–Mahony equation in Rn with singular initial data, Nonlinear Anal. 11 (1987), 139–147.

J. Avrin and J.A. Goldstein, Global existence for the Benjamin–Bona–Mahony equation in arbitrary dimensions, Nonlinear Anal. 9 (1985), 861–865.

T. Benjamin, J. Bona and J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. B 272 (1972), 47–78.

J.L. Bona and V.A. Dougalis, An initial-and boundary-value problem for a model equation for propagation of long waves, J. Math. Anal. Appl. 75 (1980), 503–522.

J.L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete Contin. Dyn. Syst. 23 (2009), 1241–1252.

A.N. Carvalho and J.W. Cholewa, Strongly damped wave equations in W 1,p , Dyn. Syst. (2007), 230–239.

A. Celebi, V.K. Kalantarov and M. Polat, Attractors for the generalized Benjamin–Bona–Mahony equation, J. Differential Equations 157 (1999), 439–451.

Y. Chen, Remark on the global existence for the generalized Benjamin–Bona–Mahony equations in arbitrary dimension, Appl. Anal. 30 (1988), 1–15.

V.V. Chepyzhov, A.A. Ilyin and S.V. Zelik, Strong trajectory and global W 1,p -attractors for the damped-driven Euler system in R2 , Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 1835–1855.

I. Chueshov, M. Polat and S. Siegmund, Gevrey regularity of global attractor for generalized Benjamin–Bona–Mahony equation, Mat. Fiz. Anal. Geom. 11 (2004), 226–242.

J. Colliander, M. Keel, G. Staffilani, H.Takaoka and T. Tao, Sharp global wellposedness for KdV and modified KdV on R and T , J. Amer. Math. Soc. 16 (2003), 705–749.

F. Dell’Oro, Y. Mammeria and V. Pata, The Benjamin–Bona–Mahony equation with dissipative memory, NoDEA Nonlinear Differential Equations Appl. 4 (2015), 899–910.

L. Grafakos, Classical Fourier Analysis, Vol. 2, Springer, New York, 2008.

J. Hale, Asmptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.

V. Kalantarov, A. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré 17 (2016), 2555–2584.

C. Liu and F. Meng, Global well-posedness and attractor for damped wave equation with sup-cubic nonlinearity and lower regular forcing on R3 , Topol. Methods Nonlinear Anal. 49 (2017), 551–563.

M. Mei, Large-time behavior of solution for generalized Benjamin–Bona–Mahony–Burgers equations, Nonlinear Anal. 33 (1998), 699–714.

M. Mei, Lq -decay rates of solutions for Benjamin–Bona–Mahony–Burgers equations, J. Differential Equations 158 (1999), 314–340.

M. Stanislavova, On the global attractor for the damped Benjamin–Bona–Mahony equation, Proceedings of the Fifth International Conference on Dynamical Systems and Differential Equations, June 16–19, 2004, Pomona, CA, USA.

M. Stanislavova, A. Stefanov and B. Wang, Asymptotic smoothing and attractors for the generalized Benjamin–Bona–Mahony equation on R3 , J. Differential Equations 219 (2005), 451–483.

C. Sun, M. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equations 227 (2006), 427–443.

C. Sun and C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal. Theor. 63 (2005), 49–65.

B. Wang, Strong attractors for the Benjamin–Bona–Mahony equation, Appl. Math. Lett. 10 (1997), 23–28.

B. Wang, Regularity of attractors for the Benjamin–Bona–Mahony equation, J. Phys. A Math. Gen. 31 (1998), 7635–7645.

B. Wang, D. Fussner and C. Bi, Existence of global attractors for the Benjamin–Bona–Mahony equation in unbounded domains, J. Phys. A Math. Theor. 40 (2007), 10491–10504.

B. Wang and W. Yang, Finite dimensional behaviour for the Benjamin–Bona–Mahony equation, J. Phys. A Math. Gen. 30 (1997), 4877–4885.

M. Wang, Long time dynamics for a damped Benjamin–Bona–Mahony equation in low regularity spaces, Nonlinear Anal. Theor. 105 (2014), 134–144.

M. Wang, Long time behavior of a damped generalized BBM equation in low regularity spaces, Math. Method Appl. Sci. 38 (2015), 4852–4866.

M. Wang, Sharp global well-posedness of the BBM equation in Lp type Sobolev spaces, Discrete Contin. Dyn. Syst. Ser. A. 36 (2016), 5763–5788.

M. Yang and C. Sun, Exponential attractors for the strongly damped wave equations, Nonlinear Anal. Real World Appl. 11 (2010), 913–919.

Y. Xie, Q. Li, C. Huang et al., Attractors for the semilinear reaction-diffusion equation with distribution derivatives, J. Math. Phys. 54 (2013), 092701.

C. Zhu, Global attractors for the damped Benjamin–Bona–Mahony equation on R1 , Appl. Anal. 86 (2007), 59–61.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2018-01-20

How to Cite

1.
WANG, Ming and LIU, Anping. Dynamics of the BBM equation with a distribution force in low regularity spaces. Topological Methods in Nonlinear Analysis. Online. 20 January 2018. Vol. 51, no. 1, pp. 91 - 109. [Accessed 8 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 51, No 1 (March 2018)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop