Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators
  • Strona domowa
  • /
  • An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators
  1. Strona domowa /
  2. Archiwum /
  3. Vol 50, No 2 (December 2017) /
  4. Articles

An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators

Autor

  • Guglielmo Feltrin
  • Fabio Zanolin

Słowa kluczowe

Cyclic feedback systems, coincidence degree, periodic solutions, continuation theorems, $\phi$-Laplacian operators

Abstrakt

Using Mawhin's coincidence degree theory, we obtain some new continuation theorems which are designed to have as a natural application the study of the periodic problem for cyclic feedback type systems. We also discuss some examples of vector ordinary differential equations with a $\phi$-Laplacian operator where our results can be applied. Our main contribution in this direction is to obtain a continuation theorem for the periodic problem associated with $(\phi(u'))' + \lambda k(t,u,u') = 0$, under the only assumption that $\phi$ is a homeomorphism.

Bibliografia

T. Bartsch and J. Mawhin, The Leray–Schauder degree of S 1 -equivariant operators associated to autonomous neutral equations in spaces of periodic functions, J. Differential Equations 92 (1991), 90–99.

P. Benevieri, J.M. do Ó and E.S. de Medeiros, Periodic solutions for nonlinear systems with mean curvature-like operators, Nonlinear Anal. 65 (2006), 1462–1475.

P. Benevieri, J.M. do Ó and E.S. de Medeiros, Periodic solutions for nonlinear equations with mean curvature-like operators, Appl. Math. Lett. 20 (2007), 484–492.

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded φ-Laplacians, J. Dynam. Differential Equations 22 (2010), 463–471.

A. Boscaggin, G. Feltrin and F. Zanolin, Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree, Trans. Amer. Math. Soc. (to appear).

R.F. Brown, A Topological Introduction to Nonlinear Analysis, 3rd edition, Springer, Cham, 2014.

A. Capietto, J. Mawhin and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc. 329 (1992), 41–72.

A. Capietto, D. Qian and F. Zanolin, Periodic solutions for differential systems of cyclic feedback type, Differential Equations Dynam. Systems 7 (1999), 99–120.

C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper solutions, Math. Sci. Eng., vol. 205, Elsevier, Amsterdam, 2006.

G. Feltrin and F. Zanolin, Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations 262 (2017), 4255–4291.

S. Fučı́k, J. Nečas, J. Souček and V. Souček, Spectral Analysis of Nonlinear Operators, Lecture Notes in Mathematics, vol. 346, Springer, Berlin, 1973.

R. E. Gaines and J. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics, vol. 568, Springer, Berlin, 1977.

P. Hartman, On boundary value problems for systems of ordinary, nonlinear, second order differential equations, Trans. Amer. Math. Soc. 96 (1960), 493–509.

H.-W. Knobloch, On the existence of periodic solutions for second order vector differential equations, J. Differential Equations 9 (1971), 67–85.

Q. Liu, D. Qian and B. Chu, Nonlinear systems with singular vector φ-Laplacian under the Hartman-type condition, Nonlinear Anal. 74 (2011), 2880–2886.

S. Lu and M. Lu, Periodic solutions for a prescribed mean curvature equation with multiple delays, J. Appl. Math. (2014), Art. ID 909252.

J. Mallet-Paret and H.L. Smith, The Poincaré–Bendixson theorem for monotone cyclic feedback systems, J. Dynam. Differential Equations 2 (1990), 367–421.

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with pLaplacian-like operators, J. Differential Equations 145 (1998), 367–393.

R. Manásevich and J. Mawhin, Periodic solutions for some nonlinear systems with pLaplacian like operators, Proceedings of the IV Catalan Days of Applied Mathematics (Tarragona, 1998), Univ. Rovira Virgili, Tarragona, 1998, pp. 103–122.

R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc. 37 (2000), 665–685.

J. Mawhin, Équations intégrales et solutions périodiques des systèmes différentiels non linéaires, Acad. Roy. Belg. Bull. Cl. Sci. 55 (1969), 934–947.

J. Mawhin, The solvability of some operator equations with a quasibounded nonlinearity in normed spaces, J. Math. Anal. Appl. 45 (1974), 455–467.

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Reg. Conf. Ser. Math., vol. 40, American Mathematical Society, Providence, 1979.

J. Mawhin, The Bernstein–Nagumo problem and two-point boundary value problems for ordinary differential equations, Qualitative Theory of Differential Equations, Vol. I, II (Szeged, 1979), Colloq. Math. Soc. János Bolyai, vol. 30, North-Holland, Amsterdam, 1981, pp. 709–740.

J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991), Lecture Notes in Mathematics, vol. 1537, Springer, Berlin, 1993, pp. 74–142.

J. Mawhin, Some boundary value problems for Hartman-type perturbations of the ordinary vector p-Laplacian, Nonlinear Anal. 40 (2000), 497–503.

J. Mawhin, Periodic solutions of systems with p-Laplacian-like operators, Nonlinear Analysis and its Applications to Differential Equations (Lisbon, 1998), Progr. Nonlinear Differential Equations Appl., vol. 43, Birkhäuser, Boston, 2001, pp. 37–63.

J. Mawhin, Reduction and continuation theorems for Brouwer degree and applications to nonlinear difference equations, Opuscula Math. 28 (2008), 541–560.

J. Mawhin, Resonance problems for some non-autonomous ordinary differential equations, Stability and Bifurcation Theory for Non-Autonomous Differential Equations, Lecture Notes in Mathematics, vol. 2065, Springer, Heidelberg, 2013, pp. 103–184.

J. Mawhin, Variations on some finite-dimensional fixed-point theorems, Ukrainian Math. J. 65 (2013), 294–301.

J. Mawhin and A. J. Ureña, A Hartman–Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems, J. Inequal. Appl. 7 (2002), 701–725.

R.D. Nussbaum, The fixed point index and some applications, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 94, Presses de l’Université de Montréal, Montréal, 1985.

R.D. Nussbaum, The fixed point index and fixed point theorems, Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991), Lecture Notes in Mathematics, vol. 1537, Springer, Berlin, 1993, pp. 143–205.

F. Obersnel and P. Omari, The periodic problem for curvature-like equations with asymmetric perturbations, J. Differential Equations 251 (2011), 1923–1971.

N. Rouche and J. Mawhin, Équations différentielles ordinaires. Tome II: Stabilité et solutions périodiques, Masson et Cie, Éditeurs, Paris, 1973.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2017-10-28

Jak cytować

1.
FELTRIN, Guglielmo & ZANOLIN, Fabio. An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators. Topological Methods in Nonlinear Analysis [online]. 28 październik 2017, T. 50, nr 2, s. 683–726. [udostępniono 3.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 50, No 2 (December 2017)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa