Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Properties of unique positive solution for a class of nonlocal semilinear elliptic equation
  • Home
  • /
  • Properties of unique positive solution for a class of nonlocal semilinear elliptic equation
  1. Home /
  2. Archives /
  3. Vol 50, No 2 (December 2017) /
  4. Articles

Properties of unique positive solution for a class of nonlocal semilinear elliptic equation

Authors

  • Ruiting Jiang
  • Chengbo Zhai

Keywords

Nonlocal elliptic equation, positive solution, existence and uniqueness, monotone operator, mixed monotone operator

Abstract

We study a class of nonlocal elliptic equations $$ -M\bigg(\int_{\Omega}|u|^{\gamma}dx\bigg)\Delta u=\lambda f(x,u) $$ with the Dirichlet boundary conditions in bounded domain. Under suitable assumptions on $M$ and the nonlinear term $f$, the existence and new properties of a unique positive solutions are obtained via a monotone operator method and a mixed monotone operator method.

References

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709.

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

C.O. Alves, F.J.S.A Corrêa and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85–93.

C.O. Alves, F.J.S.A Corrêa, T.F. Ma and D.P. Covei, Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method, Nonlinear Anal. Real World Appl. 23 (2015), 1–8.

C.Y.Chen, Y.C. Kuo and T.F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 250 (2011), 1876–1908.

F.J.S.A. Corrêa, On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Anal. 59 (2004), 1147–1155.

F.J.S.A. Corrêa and D.C.D.M. Filho, On a class of nonlocal elliptic problems via Galerkin method, J. Math. Anal. Appl. 310 (2005), 177–187.

F.J.S.A. Corrêa, D.C.D.M. Filho, S.D.B. Menezes and J. Ferreira, On a class of problems involving a nonlocal operator, Appl. Math. Comput. 147 (2004), 475–489.

D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.

Y.Y. Lan and C.L. Tang, Existence of solutions to a class of semilinear elliptic equations involving general subcritical growth, Proc. Roy. Soc. Edinburgh 144 (2014), 809–818.

Y.H. Li, F.Y. Li and J.P. Shi, Existence of a posit solutions to Kirchhoff type problems without compactness conditons, J. Differential Equations 253 (2012), 2285–2294.

T.F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. 63 (2005), 1967–1977.

O.H. Miyagaki and M.A.S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245 (2008), 3628–3638.

B.Q. Yan and D.C. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl. 442 (2016), 72–102.

C.B. Zhai and F. Wang, Properties of positive solutions for the operator equation Ax = λx and applications to fractional differential equations with integral boundary conditions, Adv. Differential Equations 2015 (2015), 1–10.

C.B. Zhai, F. Wang and L.L. Zhang, New fixed point theorems for mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems, J. Math. Anal. Appl. 382 (2011), 594–614.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2017-10-09

How to Cite

1.
JIANG, Ruiting and ZHAI, Chengbo. Properties of unique positive solution for a class of nonlocal semilinear elliptic equation. Topological Methods in Nonlinear Analysis. Online. 9 October 2017. Vol. 50, no. 2, pp. 669 - 682. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 50, No 2 (December 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop