### A noncommutative version of Farber's topological complexity

DOI: http://dx.doi.org/10.12775/TMNA.2017.030

#### Abstract

#### Keywords

#### References

A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.

K. Davidson, C ∗ -Algebras by Example, Fields Institute Monographs, American Mathematical Society, Providence, 1996.

S. Eilers, T.A. Loring and G.K. Pedersen, Stability of anticommutation relations: an application of noncommutative CW complexes, J. Reine Angew. Math. 99 (1998), 101–143.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.

M. Farber, Topology of robot motion planning, In: Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 217, Springer, Berlin, 2006, 185–230.

M. Rørdam, Classification of nuclear, simple C ∗ -algebras, In: Classification of Nuclear C ∗ -Algebras. Entropy in Operator Algebras, Encycl. Math. Sci., vol. 126 (VII), Springer, Berlin, 2002, 1–145.

C. Schochet, Topological methods for C ∗ -algebras. II. Geometry resolutions and the Künneth formula, Pacific J. Math. 98 (1982), 443–458.

M. Takesaki, On the cross-norm of the direct product of C ∗ -algebras, Tôhoku Math. J. 16 (1964), 111–122.

K. Thomsen, Nonstable K-theory for operator algebras, K-Theory 4 (1991), 245–267.

A.S. Toms and W. Winter, Strongly self-absorbing C ∗ -algebras, Trans. Amer. Math. Soc. 359 (2007), 3999–4029.

O. Uuye, Homotopical algebra for C ∗ -algebras, J. Noncommut. Geom. 7 (2013), 981–1006.

### Refbacks

- There are currently no refbacks.