Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiplicity of positive solutions for Kirchhoff type problems in $\mathbb R^3$
  • Home
  • /
  • Multiplicity of positive solutions for Kirchhoff type problems in $\mathbb R^3$
  1. Home /
  2. Archives /
  3. Vol 50, No 1 (September 2017) /
  4. Articles

Multiplicity of positive solutions for Kirchhoff type problems in $\mathbb R^3$

Authors

  • Tingxi Hu
  • Lu Lu

Keywords

Variational method, Kirchhoff equation, multiplicity of solutions, lack of compactness

Abstract

We are concerned with the multiplicity of positive solutions for the following Kirchhoff type problem: \begin{equation*} \begin{cases} \displaystyle - \bigg(\epsilon ^2a + \epsilon b\int_{{\mathbb{R}^3}}{|\nabla u{|^2}} dx \bigg)\Delta u + u = Q(x)|u|^{p-2}u,& x\in \mathbb{R}^3, \hfill \\ u \in H^1(\mathbb{R}^3), \quad u > 0, & x\in \mathbb{R}^3 , \end{cases} \end{equation*} where $\epsilon> 0 $ is a parameter, $a, b> 0$ are constants, $p\in (2, 6)$, and $Q\in C(\mathbb{R}^3)$ is a nonnegative function. We show how the profile of $Q$ affects the number of positive solutions when $\epsilon $ is sufficiently small.

References

H. Berestycki and P.L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983), 347–375.

D. Cao and E.S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in RN , Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 567–588.

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations 17 (2003), 257–281.

C.Y. Chen, Y.C. Kuo and T.F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 205 (2011), 1876–1908.

C.Y. Chen, Y.C. Kuo and T.F. Wu, Existence and multiplicity of positive solutions for the nonlinear Schrödinger–Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 745–764.

Y. Deng, S. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 , J. Funct. Anal. 269 (2015), 3500–3527.

G.M. Figueiredo, N. Ikoma and J.R. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal. 213 (2014), 931–979.

B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn , Mathematical Analysis and Applications Part A, Adv. in Math. Suppl. Stud. 7 Academic Press, New York, (1981), 369–402.

Y. He and G. Li, Standing waves for a class of Kirchhoff type problems in R3 involving critical Sobolev exponents, Calc. Var. Partial Differential Equations 54 (2015), 3067–3106.

Y. He, G. Li and S. Peng, Concentrating Bound States for Kirchhoff type problems in R3 involving critical Sobolev exponents, Adv. Nonlinear Stud. 14 (2014), 441–468.

X. He and W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009), 1407–1414.

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , J. Differential Equations 2 (2012), 1813–1834.

Y. Huang, Z. Liu and Y. Wu, On finding solutions of a Kirchhoff type problem, Proc. Amer. Math. Soc. 144 (2016), 3019–3033.

Y. Huang, Z. Liu and Y. Wu, Positive solutions to an elliptic equation in RN of the Kirchhoff type, arXiv:1603.07428.

M.K. Kwong, Uniqueness of positive solutions of ∆u − u + up = 0 in Rn , Arch. Rational Mech. Anal. 105 (1989), 243–266.

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3 , J. Differential Equations 257 (2014), 566–600.

Z. Liang, F. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 155–167.

D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differential Equations 257 (2014), 1168–1193.

W.M. Ni and I. Takagi, On the shape of least energy solutions to a Neumann problem, Commun. Pure Appl. Math. 44 (1991), 819–851.

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006), 246–255.

J. Sun, T.F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system, J. Differential Equations 260 (2016), 586–627.

G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 281–304.

J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations 253 (2012), 2314–2351.

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

Q. Xie, S. Ma and X. Zhang, Bound state solutions of Kirchhoff type problems with critical exponent, J. Differential Equations 261 (2016), 890–924.

H. Ye, Positive high energy solution for Kirchhoff equation in R3 with superlinear nonlinearities via Nehari–Pohožaev manifold, Discrete Contin. Dynam. Systems 35 (2015), 3857–3877.

Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317 (2006), 456–463.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2017-08-19

How to Cite

1.
HU, Tingxi and LU, Lu. Multiplicity of positive solutions for Kirchhoff type problems in $\mathbb R^3$. Topological Methods in Nonlinear Analysis. Online. 19 August 2017. Vol. 50, no. 1, pp. 231 - 252. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 50, No 1 (September 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop