Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Localization of positive critical points in Banach spaces and applications
  • Home
  • /
  • Localization of positive critical points in Banach spaces and applications
  1. Home /
  2. Archives /
  3. Vol 49, No 2 (June 2017) /
  4. Articles

Localization of positive critical points in Banach spaces and applications

Authors

  • Radu Precup
  • Csaba Varga

Keywords

Critical point, mountain pass lemma, positive solution, p-Laplace equation

Abstract

Two critical point theorems of M. Schechter in a ball of a Hilbert space are extended to uniformly convex Banach spaces by exploiting the properties of the duality mapping. Moreover, the critical points are sought in the intersection of a ball with a wedge, in particular with a cone, making possible applications to positive solutions of variational problems. The extension from Hilbert to Banach spaces not only requires a major refining of reasoning, but also a different statement by adding a third possibility to the original two alternatives from Schechter's results. The theory is applied to positive solutions for $p$-Laplace equations.

References

M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys. 54 (2003), 771–783.

C. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer, London, 2009.

I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.

K. Deimling, Ordinary Differential Equations in Banach Spaces, Springer, Berlin, 1977.

F. Della Pietra and N. Gavitone, Anisotropic elliptic problems involving Hardy-type potential, J. Math. Anal. Appl. 397 (2013), 800–813.

J. Diestel, Geometry of Banach Spaces — Selected Topics, Springer, Berlin, 1975.

G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with p-Laplacian, Port. Math. 58 (2001), 339–378.

A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.

H. Lisei, R. Precup and C. Varga, A Schechter type critical point result in annular conical domains of a Banach space and applications, Discrete Contin. Dyn. Syst. 36 (2016), 3775–3789.

R. Kajikiya, Mountain pass theorem in ordered Banach spaces and its applications to semilinear elliptic equations, Nonlinear Differential Equations Appl. 19 (2012), 159–175.

D. O’Regan and R. Precup, Theorems of Leray–Schauder Type, Gordon and Breach, Amsterdam, 2001.

R. Precup, Methods in Nonlinear Integral Equations, Kluwer, Dordrecht, 2002.

R. Precup, The Leray–Schauder boundary condition in critical point theory, Nonlinear Anal. 71 (2009), 3218–3228.

R. Precup, Critical point theorems in cones and multiple positive solutions of elliptic problems, Nonlinear Anal. 75 (2012), 834–851.

M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc. 331 (1992), 681–703.

M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2017-05-22

How to Cite

1.
PRECUP, Radu and VARGA, Csaba. Localization of positive critical points in Banach spaces and applications. Topological Methods in Nonlinear Analysis. Online. 22 May 2017. Vol. 49, no. 2, pp. 817 - 833. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 49, No 2 (June 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop