Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The existence of positive solutions for the singular two-point boundary value problem
  • Home
  • /
  • The existence of positive solutions for the singular two-point boundary value problem
  1. Home /
  2. Archives /
  3. Vol 49, No 2 (June 2017) /
  4. Articles

The existence of positive solutions for the singular two-point boundary value problem

Authors

  • Yanmin Niu
  • Baoqiang Yan

Keywords

Singular differential equation, two-point boundary value problem, fixed point theorem, positive solution

Abstract

In this paper, we consider the following boundary value problem: $$ \begin{cases} ((-u'(t))^n)'=nt^{n-1}f(u(t)) &\text{for }0< t< 1,\\ u'(0)=0,\quad u(1)=0, \end{cases} $$% where $n> 1$. Using the fixed point theory on a cone and approximation technique, we obtain the existence of positive solutions in which $f$ may be singular at $u=0$ or $f$ may be sign-changing.

References

R.P. Agarwal and D. O’Regan, Singular boundary value problems for superlinear second ordinary and delay differential equations, J. Differential Equations 130 (1996), 335–355.

R.P. Agarwal and D. O’Regan, Nonlinear superlinear singular and nonsingular second order boundary value problems, J. Differential Equations 143 (1998), 60–95.

G. Dai, Eigenvalue, bifurcation, existence and nonexistence of solutions for Monge–Ampére equations, Analysis of PDEs, arXiv:1007.3013 (2010).

P. Delanoe, Radially symmetric boundary value problems for real and complex elliptic Monge–Ampère equations, J. Differential Equations 58 (1985), 318–344.

J.V.A. Goncalves and C.A.P. Santos, Classical solutions of singular Monge–Ampère equation a ball, J. Math. Anal. Appl. 305 (2005), 240–252.

D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.

C. Gutierrez, The Monge–Ampère Equation, Birkhäuser, Basel, 2000.

S. Hu and H. Wang, Convex Solutions of Boundary Value Problems Arising from Monge–Ampère Equations, Discrete Contin. Dyn. Syst. 16 (2006), 705–720.

N.D. Kutev, Nontrivial solutions for the equations of Monge–Ampère type, J. Math. Anal. Appl. 132 (1988), 424–433.

A.C. Lazer and P.J. McKenna, On singular boundary value problems for the Monge–Ampère operator, J. Math. Anal. Appl. 197 (1996), 341–362.

P.L. Lions, Two remarks on Monge–Ampère equations, Ann. Mat. Pura Appl. 142 (1985), 263–275.

L. Ma and B. Liu, Symmetry results for classical solutions of Monge–Ampère systems on bounded planar domains, J. Math. Anal. Appl. 369 (2010), 678–685.

A. Mohammed, Existence and estimates of solutions to a singular Dirichlet problem for the Monge–Ampère equation, J. Math. Anal. Appl. 340 (2008), 1226–1234.

A. Mohammed, Singular boundary value problems for the Monge–Ampère equation, Nonlinear Anal. 70 (2009), 457–464.

J. Wang, W. Gao and Z. Lin, Boundary value problems for general second order equations and similarity solutions to the rayleing problem, Tohoku Math. J. 47 (1995), 327–344.

F. Wang and Y. An, Triple nontrivial radial convex solutions of systems of Monge–Ampère equations, Appl. Math. Lett. 25 (2012), 88–92.

H. Wang, Radial convex solutions of boundary value problems for systems of Monge–Ampère equations, Anal. Partial Differential Equations, arXiv:1008.4614 (2010).

H. Wang, Convex solutions of systems arising from Monge–Ampère equations, Electron. J. Qual. Theory Differ. Equ. 26 (2009), 1–8.

G. Yang, Positive solutions of singular Dirichlet boundary value problems with signchanging nonlinearities, Comput. Math. Appl. 51 (2006), 1463–1470.

Z. Zhang and K. Wang, Existence and non-existence of solutions for a class of Monge–Ampère equations, J. Differential Equations 246 (2009), 2849–2875.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2017-03-04

How to Cite

1.
NIU, Yanmin and YAN, Baoqiang. The existence of positive solutions for the singular two-point boundary value problem. Topological Methods in Nonlinear Analysis. Online. 4 March 2017. Vol. 49, no. 2, pp. 665 - 682. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 49, No 2 (June 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop