Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of solutions to a semilinear elliptic boundary value problem with augmented Morse index bigger than two
  • Home
  • /
  • Existence of solutions to a semilinear elliptic boundary value problem with augmented Morse index bigger than two
  1. Home /
  2. Archives /
  3. Vol 49, No 1 (March 2017) /
  4. Articles

Existence of solutions to a semilinear elliptic boundary value problem with augmented Morse index bigger than two

Authors

  • Alfonso Castro
  • Ivan Ventura

Keywords

Subcritical semilinear elliptic equation, critical point, Morse index, homotopy groups, Nehari manifold, mountain pass lemma, deformation lemma

Abstract

Building on the construction of least energy sign-changing solutions to variational semilinear elliptic boundary value problems introduced in \cite{ccn}, we prove the existence of a solution with {\it augmented Morse index} at least three when a sublevel of the corresponding action functional has nontrivial topology. We provide examples where the set of least energy sign changing solutions is disconnected, hence has nontrivial topology.

References

A. Aftalion and F. Pacella, Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, C.R. Acad. Sci. Paris Sér. I (2004).

A. Ambroseti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

T. Bartsch and Z.Q. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996), 115–131.

T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal. 22 (2003), 1–14.

A. Castro, J. Cossio and J.M. Neuberger, Sign changing solutions for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (1997), 1041–1053.

A. Castro, J. Cossio and J.M. Neuberger, On multiple solutions of a nonlinear Dirichlet problem, Nonlinear Anal. 30 (1997), no. 6, 3657–3662.

A. Castro, J. Cossio and J.M. Neuberger, A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems, Electron. J. Differential Equations 1998 (1998), no. 2, 1–18.

A. Castro and A.C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Ann. Mat. Pura Appl. 70 (1979), no. 4, 113–137.

K.C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993.

K.C. Chang, S. Li and J. Liu, Remarks on multiple solutions for asymptotically linear elliptic boundary value problems, Topol. Methods Nonlinear Anal. 3 (1994), 179–187.

D. Gilberg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, 1997.

H. Hofer, The topological degree at a critical point of mountain pass type, Proc. Sympos. Pure Math. 45 (1986), 501–509.

A.C. Lazer and S. Solimini, Nontrivial solutions of operator equations and Morse indices of critical points of min-max type, Nonlinear Anal. 12 (1988), 761–775.

P.H. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations, Nonlinear Anal. 65 (1978), 161–177.

P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, vol. 65, Providence, RI, AMS, 1986.

Z.Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 43–57.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-11-23

How to Cite

1.
CASTRO, Alfonso and VENTURA, Ivan. Existence of solutions to a semilinear elliptic boundary value problem with augmented Morse index bigger than two. Topological Methods in Nonlinear Analysis. Online. 23 November 2016. Vol. 49, no. 1, pp. 233 - 244. [Accessed 2 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 49, No 1 (March 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop