On the nonlinear analysis of optical flow

Shengxiang Xia, Yanmin Yin


We utilize the methods of computational topology to the database of optical flow created by Roth and Black from range images, and demonstrate a qualitative topological analysis of spaces of $3 \times 3, 5 \times 5$ and $7 \times 7$ optical flow patches. We experimentally prove that there exist subspaces of the spaces of the three sizes high-contrast patches that are topologically equivalent to a circle and a three circles model, respectively. The Klein bottle is the quotient space described as the square $[0,1] \times [0,1]$ with sides identified by the relations $(0, y)\sim (1, y)$ for $y\in [0, 1]$ and $(x, 0) \sim (1-x, 1)$ for $ x\in [0, 1]$. For the space of $3 \times 3$ optical flow patches we found a subspace having the same homology as that of the Klein bottle. As the size of patches increases, the Klein bottle feature of the spaces of $5 \times 5$ and $7 \times 7$ optical flow patches gradually disappears.


Optical flow; persistent homology; high-contrast patches; Klein bottle

Full Text:



  • There are currently no refbacks.

Partnerzy platformy czasopism