### Global phase portraits of Kukles differential systems with homogenous polynomial nonlinearities of degree 5 having a center

DOI: http://dx.doi.org/10.12775/TMNA.2016.049

#### Abstract

#### Keywords

#### References

C.A. Buzzi, J. Llibre and J.C. Medrado, Phase portraits of reversible linear diﬀerential systems with cubic homogeneous polynomial nonlinearities having a non-degenerate center at the origin, Qual. Theory Dyn. Syst. 7 (2009), 369–403.

R. Benterki and J. Llibre, Centers and their perturbation for the Kukles homogeneous polynomial diﬀerential systems of degree 4 symmetric with respect to the y-axis, preprint (2015).

F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Diﬀerential Systems, Springer, 2006.

J. Giné, Conditions for the existence of a center for the Kukles homogeneous systems, Comput. Math. Appl. 43 (2002), 1261–1269.

J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with odd degree, Bull. London Math. Soc. (2015), doi: 10.1112/blms/bdv005 (to appear).

J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with even degree, preprint (2015).

J. Llibre and T. Salhi, Centers and their perturbation for the Kukles homogeneous polynomial diﬀerential systems of degree 4 symmetric with respect to the x-axis, preprint (2015).

K.E. Malkin, Criteria for the center for a certain diﬀerential equation, Volz. Mat. Sb. Vyp. 2 (1964), 87–91 (Russian).

L. Markus, Global structure of ordinary diﬀerential equations in the plane, Trans. Amer. Math. Soc. 76 (1954), 127–148.

D. Neumann, Classiﬁcation of continuous ﬂows on 2-manifold, Proc. Amer. Math. Soc. 48 (1975), 73–81.

E. P. Volokitin, V. V. Ivanov, Isochronicity and commutation of polynomial vector ﬁelds, Siberian Math. J. 40 (1999), 22–37.

N.I. Vulpe and K.S. Sibirskiı̆, Centro-aﬃne invariant conditions for the existence of a center of a diﬀerential system with cubic nonlinearities, Dokl. Akad. Nauk SSSR 301 (1988), 1297–1301 (Russian); transl.: Soviet Math. Dokl. 38 (1989), 198-201.

H. Żołądek, The classiﬁcation of reversible cubic systems with center, Topol. Methods Nonlinear Anal. 4 (1994), 79–136.

H. Żołądek, Remarks on: “The classiﬁcation of reversible cubic systems with center” (Topol. Methods Nonlinear Anal. 4 (1994), 79–136), Topol. Methods Nonlinear Anal. 8 (1996), 335–342.

### Refbacks

- There are currently no refbacks.