### Alternating Heegaard diagrams and Williams solenoid attractors in $3$-manifolds

DOI: http://dx.doi.org/10.12775/TMNA.2016.033

#### Abstract

#### Keywords

#### References

M. Boileau, S. Maillot and J. Porti, Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses 15. Société Mathḿatique de France, Paris 2003.

G. Burde and H. Zieschang, Knots, de Gruyter Stud. Math. 5, Walter de Gruyter, Berlin, New York, 1985.

B. Jiang and Y. Ni, S. Wang, 3-manifolds that admit knotted solenoids as attractors, Trans. Amer. Math. Soc. 356 (2004), 4371–4382.

M. Montesinos, Classical tessellations and three-manifolds, Springer–Verlag, 1985.

J. Ma and B. Yu, Genus two Smale–Williams solenoid attractors in 3-manifolds, J. Knot Theory Ramifications 20 (2011), 909–926.

J. Ma and B. Yu, The realization of Smale solenoid type attractors in 3-manifolds, Topology Appl. 154 (2007), 3021–3031.

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.

W.P. Thurston, The geometry and topology of three-manifolds, Lecture Notes, 1978.

R.F. Williams, One-dimensional non-wandering sets, Topology 6 (1967), 473–487.

### Refbacks

- There are currently no refbacks.