Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Motion planning algorithms for configuration spaces in the higher dimensional case
  • Home
  • /
  • Motion planning algorithms for configuration spaces in the higher dimensional case
  1. Home /
  2. Archives /
  3. Vol 47, No 2 (June 2016) /
  4. Articles

Motion planning algorithms for configuration spaces in the higher dimensional case

Authors

  • Ayşe Borat

DOI:

https://doi.org/10.12775/TMNA.2016.030

Keywords

Motion planning algorithm, configuration spaces

Abstract

The topological approach to the motion planning problem was introduced by Farber in \cite{F} and \cite{F2}. A motion planning problem is a rule assigning a continuous path to given two configurations - initial point and desired final point of a robot. Farber introduced the notion of topological complexity which measures the discontinuity of any motion planner in a configuration space. In \cite{Ru}, Rudyak introduced higher topological complexity, the concept fully developed in \cite{B}. Higher topological complexity is related to motion planning problem which assigns a continuous path (with $n$-legs) to given $n$ configurations. More precisely, it can be understood as a motion planning algorithm when a robot travels from the initial point $A_{1}$ to $A_{2}$, then from $A_{2}$ to $A_{3}$, and this keeps going until it reaches at the desired final point $A_{n}$. 

This paper is based on the work of Mas-Ku and Torres-Giese who gave an explicit motion planning algorithm for configuration spaces $F(\mathbb{R}^{2},k)$ and $F(\mathbb{R}^{n},k)$, in \cite{MT}. In the last section, we will consider the higher dimensional case in the sense of Rudyak in \cite{Ru}, and give an explicit motion planning algorithm for this case.

References

I. Basabe, J. Gonzalez, Y. Rudyak and D. Tamaki, Higher topological complexity and its symmetrization, Algebraic and Geometric Topology 14 (2014), 2103–2124.

M. Farber, Instabilities of robot motion, Topology Appl. 140 (2004), 245–266.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.

J. Gonzalez and M. Grant, Sequential motion planning of non-colliding particles in Euclidean spaces, Proc. Amer. Math. Soc. 143 (2015), 4503–4512.

H. Mas-Ku and E. Torres-Giese, Motion planning algorithms for configuration spaces, Bol. Soc. Mat. Mex., DOI 10.1007/s40590-014-0046-2.

Yu. Rudyak, On higher analogs of topological complexity, Topology Appl. 157 (2010), 916–920; Erratum: Topology Appl. 157 (2010), p. 1118.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-06-01

How to Cite

1.
BORAT, Ayşe. Motion planning algorithms for configuration spaces in the higher dimensional case. Topological Methods in Nonlinear Analysis. Online. 1 June 2016. Vol. 47, no. 2, pp. 763 - 767. [Accessed 5 July 2025]. DOI 10.12775/TMNA.2016.030.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 47, No 2 (June 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 1

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop