Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A degree theory for variational inequalities with sums of maximal monotone and (S$_+$) operators
  • Home
  • /
  • A degree theory for variational inequalities with sums of maximal monotone and (S$_+$) operators
  1. Home /
  2. Archives /
  3. Vol 47, No 2 (June 2016) /
  4. Articles

A degree theory for variational inequalities with sums of maximal monotone and (S$_+$) operators

Authors

  • In-Sook Kim
  • Martin Väth

DOI:

https://doi.org/10.12775/TMNA.2016.022

Keywords

Degree theory, maximal monotone operator, operator of type (S$_ $), multivalued map, variational inequality, Browder-Skrypnik degree

Abstract

We develop a degree theory for variational inequalities which contain multivalued (S$_+$)-perturbations of maximal monotone operators. The multivalued operators need not necessarily be convex-valued. The result is simultaneously an extension of a degree theory for variational inequalities (developed by Benedetti, Obukhovskii and Zecca) and of the Skrypnik-Browder degree and extensions thereof.

References

G.M. Asfaw and A.G. Kartsatos, A Browder topological degree theory for multi-valued pseudomonotone perturbations of maximal monotone operators, Adv. Math. Sci. Appl. 22 (2012), 91–148.

I. Benedetti and V.V. Obukhovskiı̆, On the index of solvability for variational inequalities in Banach spaces, Set-Valued Anal. 16 (2008), 67–92.

I. Benedetti and P. Zecca, Relative topological degree and variational inequalities, Mediter. J. Math. 3 (2006), 47–65.

K. Borsuk, Theory of Retracts, Polish Scientific Publ., Warszawa, 1967.

H. Brézis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math. 23 (1970), 123–144.

F.E. Browder, Nonlinear maximal monotone mappings in Banach spaces, Math. Ann. 175 (1968), 81–113.

F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., vol. XVIII, Part 2, Amer. Math. Soc., Providence, R.I., 1976.

F.E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9 (1983), 1–39.

M.M. Day, Normed Linear Spaces, 3rd ed., Springer–Verlag, 1973.

R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Longman, 1999.

B.-T. Kien, M.-M. Wong and N.-C. Wong, On the degree theory for general mappings of monotone type, J. Math. Anal. Appl. 340 (2008), 707–720.

I.V. Skrypnik, Nonlinear Elliptic Boundary Value Problems, Teubner–Verlag, 1986.

M. Väth, Topological Analysis. From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions, de Gruyter-Verlag, 2012.

E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. II/B, Springer–Verlag, 1990.

S.-S. Zhang and Y.-Q. Chen, Degree theory for multivalued (S)-type mappings and fixed point theorems, Appl. Math. Mech. 11 (1990), 441–454.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-06-01

How to Cite

1.
KIM, In-Sook and VÄTH, Martin. A degree theory for variational inequalities with sums of maximal monotone and (S$_+$) operators. Topological Methods in Nonlinear Analysis. Online. 1 June 2016. Vol. 47, no. 2, pp. 405 - 422. [Accessed 1 July 2025]. DOI 10.12775/TMNA.2016.022.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 47, No 2 (June 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop