Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Well-posedness for mixed quasi-variational-hemivariational inequalities
  • Strona domowa
  • /
  • Well-posedness for mixed quasi-variational-hemivariational inequalities
  1. Strona domowa /
  2. Archiwum /
  3. Vol 47, No 2 (June 2016) /
  4. Articles

Well-posedness for mixed quasi-variational-hemivariational inequalities

Autor

  • Zhenhai Liu
  • Shengda Zeng
  • Biao Zeng

DOI:

https://doi.org/10.12775/TMNA.2016.016

Słowa kluczowe

Mixed quasi-variational-hemivariational inequality, well-posedness, $L$-$\alpha$-well-posedness, lower semi-Mosco convergence, $\alpha$-$\eta$-monotonicity

Abstrakt

In this paper, we consider the well-posedness of mixed quasi-variational-hemivariational inequalities ((MQVHVI) for short). By introducing a new concept of the $\alpha$-$\eta$-monotone mappings, we establish several metric characterizations and equivalent conditions of well-posedness for the (MQVHVI).

Bibliografia

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123–145.

F.E. Browder, Nonlinear maximal monotone operators in Banach space, Math. Ann. 175 (1968), 89–113.

S. Carl and D. Motreanu, Extremal solutions of quasilinear parabolic inclusions with generalized Clarke’s gradient, J. Differential Equations 191 (2003), 206–233.

F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York (1983).

N. Costea, Existence and uniqueness results for a class of quasi-hemivariational inequalities, J. Math. Anal. Appl. 373 (2011) 305-315.

N. Costea and C. Lupu, On a class of variational-hemivariational inequalities involving set valued mappings, Adv. Pure Appl. Math. 1 (2010), 233–246.

N. Costea and C. Varga, Systems of nonlinear hemivariational inequalities and applications, Topol. Methods Nonlinear Anal. 41 (2013), 39–65.

L.C. Ceng and J.C. Yao, Well-posedness of generailized mixed variational inequalities inclusion problems and fixed point problem, Nonlinear Anal. 69 (2008), 4585–4603.

Y.P. Fang and N.J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Theory Appl. 118 (2003), 327–338.

K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), 519–537.

S.M. Guu and J. Li, Vector variational-like inequalities with generalized bifunctions defined on nonconvex sets, Nonlinear Anal. 71 (2009), 2847–2855.

R. Glowinski, J.L. Lions and R. Trèmoliéres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam (1981).

D. Goeleven and D. Mentagui, Well-posed hemivariational inequalities, Numer. Funct. Anal. Optim. 16 (1995), 909–921.

N.J. Huang, J. Li and B.H. Thompson, Stability for parametric implicit vector equilibrium problems, Math. Comput. Model. 43 (2006), 1267–1274.

C. Kuratowski, Topology, Vol. I and II, Academic Press, New York, NY, USA (1966).

K. Kimura, Y.C. Liou, S.Y. Wu and J.C. Yao, Well-posedness for parametric vector equilibrium problems with applications, J. Ind. Manag. Optim. 4 (2008), 313–327.

B. Lemaire, Well-posedness conditioning and regularization of minimization inclusion and fixed point problems, Pliska Stud. Math. Bulgar. 12 (1998), 71–84.

Z.H. Liu, A class of evolution hemivariational inequalities, Nonlinear Anal. 36 (1999), 91–100.

Z.H. Liu, Ellipic variational hemivariational inequalities, App. Math. Lett. 16 (2003), 871–876.

Z.H. Liu, Generalized quasi-variational hemivariational inequalities, Appl. Math. Lett. 17 (2004), 741–745.

Z.H. Liu, Some convergence results for evolution hemivariational inequalities, J. Global. Optim. 29 (2004), 85–95.

Z.H. Liu, Browder–Tikhonov regularization of non-coercive evolution hemivariational inequalities, Inverse Problems 21 (2005), 13–20.

Z.H. Liu, Existence results for quasilinear parabolic hemivariational inequalities, J. Differential Equations 244 (2008), 1395–1409.

Z.H. Liu, On boundary variational-hemivariational inequalities of elliptic type, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 419–434.

Z.H. Liu and X.W. Li, Approximate controllability for a class of hemivariational inequalities, Nonlinear Anal. Real World Appl. 22 (2015), 581–591.

Z.H. Liu and B. Zeng, Optimal control of generalized quasi-variational hemivariational inequalities and its applications, Appl. Math. Optim. 72 (2015), 305–323.

X.J. Long and N.J. Huang, Metric characterizations of α-well-posedness for symmetric quasi-equilibrium problems, J. Global. Optim. 45 (2009), 459–471.

N.K. Mahato and C. Nahak, Weakly relaxed α-pseudomonotonicity and equilibrium, Appl. Math. Comput. 40 (2012), 499–509.

S. Migórski and A. Ochal, Boundary hemivariational inequality of parabolic type, Nonlinear Anal. 57 (2004), 579–596.

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.

U. Mosco, Convergence of convex sets and of solutions of variational ineuqalities, Adv. Math. 3 (1969), 510–585.

D. Motreanu and P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Kluwer Academic, Dordrecht, 1999.

P.D. Panagiotopoulos, Nonconvex superpotentials in sense of F.H. Clarke and applications, Mech. Res. Comm. 8 (1981), 335–340.

P.D. Panagiotopoulos, Hemivariational inequalities, Applications in Mechanics and Engineering, Springer, Berlin, 1993.

Z. Peng, Z.H. Liu and X. Liu, Boundary hemivariational inequality problems with doubly nonlinear operators, Math. Ann. 356 (2013), 1339–1358.

J.W. Peng and J. Tang, α-well-posedness for mixed quasi variational-like inequality problems, Abstr. Appl. Anal. (2011), doi:10.1155/2011/683140.

A.N. Tykhonov, On the stability of the functional optimization problem, U.S.S.R. Comput. Math. Math. Phys. 6 (1966), 631–634.

M.A. Noor, K.I. Noor and V. Gupta, On equilibrium-like problems, Appl. Anal. 86 (2007), 807–818.

M.A. Noor, K.I. Noor and S. Zainab, On a predictor-corrector method for solving invex equilibrium problems , Nonlinear Anal. 71 (2009), 3333–3338.

Y.B. Xiao and N.J. Huang, Well-posedness for a class of variational-hemivariational ineuqalities with perturbations, J. Global. Optim. 151 (2011), 33–51.

Y.B. Xiao, X.M. Yang and N.J. Huang, Some equivalence results for well-posedness of hemivariational inequalities, J. Global. Optim., doi: 10.1007/s10898-014-0198-7.

Y.L. Zhang and Y.R. He, The hemivariational inequalities for an upper semicontinuous set-valued mapping, J. Optim. Theory Appl. 156 (2013), 716–725.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2016-06-01

Jak cytować

1.
LIU, Zhenhai, ZENG, Shengda & ZENG, Biao. Well-posedness for mixed quasi-variational-hemivariational inequalities. Topological Methods in Nonlinear Analysis [online]. 1 czerwiec 2016, T. 47, nr 2, s. 561–578. [udostępniono 4.7.2025]. DOI 10.12775/TMNA.2016.016.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 47, No 2 (June 2016)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 12

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa