Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions of singular equations
  • Home
  • /
  • Periodic solutions of singular equations
  1. Home /
  2. Archives /
  3. Vol 47, No 1 (March 2016) /
  4. Articles

Periodic solutions of singular equations

Authors

  • Antonio Ureña

DOI:

https://doi.org/10.12775/TMNA.2015.087

Keywords

Periodic solutions, singular equations, indefinite weight

Abstract

We study second-order ordinary differential equations of Newtonian type. The forcing terms under consideration are the product of a nonlinearity which is singular at the origin with an indefinite weight. Under some additional assumptions we show the existence of periodic solutions.

References

R. Agarwal and D. O'Regan, A Survey of recent results for initial and boundary value problems singular in the dependent variable, Handbook of Differential Equations, 1-68, Elsevier/North-Holland, Amsterdam, 2004.

L.E. Bobisud, D. O'Regan and W.D. Royalty, Solvability of some nonlinear boundary value problems, Nonlinear Anal. 12 (1988), no. 9, 855-869.

A. Boscaggin and F. Zanolin, Second order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Preprint, 2013.

J.L. Bravo and P.J. Torres, Periodic solutions of a singular equation with indefinite weight, Adv. Nonlinear Stud. 10 (2010), no. 4, 927-938.

E.N. Dancer, On the use of asymptotics in nonlinear boundary value problems, Ann. Mat. Pura Appl. (4) 131 (1982), 167-185.

C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Mathematics in Science and Engineering, 205, Elsevier B.V., Amsterdam, 2006.

J.A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second-order ordinary differential equations J. Differential Equations 79 (1989), no. 1, 62-78.

M. Gaudenzi, P. Habets and F. Zanolin, Positive solutions of singular boundary value problems with indefinite weight, Bull. Belg. Math. Soc. 9 (2002), 607-619.

W.B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113-135.

Z. Guo, Solvability of some singular nonlinear boundary value problems and existence of positive radial solutions of some nonlinear elliptic problems, Nonlinear Anal. 16 (1991), no. 9, 781-790.

P. Habets and F. Zanolin, Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl. 181 (1994), no. 3, 684-700.

J. Janus and J. Myjak, A generalized Emden-Fowler equation with a negative exponent, Nonlinear Anal. 23 (1994), no. 8, 953-970.

C.D. Luning and W.L. Perry, Positive solutions of negative exponent generalized Emden-Fowler boundary value problems, SIAM J. Math. Anal. 12 (1981), no. 6, 874-879.

A. Nachman and A. Callegari, A nonlinear singular boundary value problem in the theory of pseudoplastic uids, SIAM J. Appl. Math. 38 (1980), no. 2, 275-281.

A.J. Ure~na, Some counterexamples for singular equations with indefinite weight, in preparation.

S.D. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal. 3 (1979), no. 6, 897-904.

Downloads

  • PREVIEW
  • Full text

Published

2016-03-01

How to Cite

1.
UREÑA, Antonio. Periodic solutions of singular equations. Topological Methods in Nonlinear Analysis. Online. 1 March 2016. Vol. 47, no. 1, pp. 55 - 72. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2015.087.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 47, No 1 (March 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 22

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop