Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Positive solutions to p-Laplace reaction-diffusion systems with nonpositive right-hand side
  • Strona domowa
  • /
  • Positive solutions to p-Laplace reaction-diffusion systems with nonpositive right-hand side
  1. Strona domowa /
  2. Archiwum /
  3. Vol 46, No 2 (December 2015) /
  4. Articles

Positive solutions to p-Laplace reaction-diffusion systems with nonpositive right-hand side

Autor

  • Mateusz Maciejewski

DOI:

https://doi.org/10.12775/TMNA.2015.065

Słowa kluczowe

degree theory, tangency condition, cone, quasilinear elliptic system, positive weak solution

Abstrakt

The aim of the paper is to show the existence of positive solutions to the elliptic system of partial differential equations involving the $p$-Laplace operator
\[
\begin{cases}
-\Delta_p u_i(x) = f_i(u_1 (x),u_2(x),\ldots,u_m(x)), & x\in \Omega,\ 1\leq i\leq m,
\\
u_i(x)\geq 0, & x\in \Omega,\ 1\leq i\leq m,\\
u(x) = 0, & x\in \partial \Omega.
\end{cases}
\]
We consider the case of nonpositive right-hand side $f_i$, $i=1,\ldots,m$. The sufficient conditions entails spectral bounds of the matrices associated with $f=(f_1,\ldots,f_m)$. We employ the degree theory from \cite{CwMac} for tangent perturbations of maximal monotone operators in Banach spaces.

Bibliografia

A. Aghajani and J. Shamshiri, Multiplicity of positive solutions for quasilinear elliptic {$p$}-Laplacian systems, Electron. J. Differential Equations {2012 (2012), no. 111, 1-16.

C. Azizieh, P. Clement and E. Mitidieri, Existence and a priori estimates for positive solutions of $p$-Laplace systems, J. Differential Equations {184 (2002), no. 2, 422-442.

F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262.

A. Ćwiszewski and W. Kryszewski, Constrained topological degree and positive solutions of fully nonlinear boundary value problems, J. Differential Equations {247 (2009), no. 8, 2235-2269.

A. Ćwiszewski and M. Maciejewski, Positive stationary solutions for {$p$}-Laplacian problems with nonpositive perturbation, J. Differential Equations 254 (2013), no. 3, 1120-1136.

J. Fleckinger, J.-P. Gossez, P. Takac and F. de Thelin, Existence, nonexistence et principe de l'antimaximum pour le {$p$}-laplacien, C.R. Acad. Sci. Paris S'er. I Math. 321 (1995), no. 6, 731-734.

J. Fleckinger, R. Pardo and F. de Thelin, Four-parameter bifurcation for a {$p$}-Laplacian system, Electron. J. Differential Equations 2001 (2001), no. 6, 1-15. (electronic), 2001.

F. R. Gantmacher, The Theory of Matrices, Vols. 1, 2, Chelsea Publishing Co., New York, 1959.

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977; Grundlehren der Mathematischen Wissenschaften, Vol. 224.

A. Granas, The Leray-Schauder index and the fixed point theory for arbitrary ANRs, Bull. Soc. Math. France 100 (1972), 209-228.

A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.

D. D. Hai and H. Wang, Nontrivial solutions for {$p$}-Laplacian systems, J. Math. Anal. Appl. 330 (2007), no. 1, 186-194.

G. Infante, M. Maciejewski and R. Precup, A topological approach to the existence and multiplicity of positive solutions of $(p,q)$-Laplacian systems, preprint (http://arxiv.org/abs/1401.1355v2), 2014.

W. Kryszewski and M. Maciejewski, Positive solutions to partial differential inclusions: degree-theoretic approach (in preparation).

K. Q. Lan and Z. Zhang, Nonzero positive weak solutions of systems of {$p$}-Laplace equations, J. Math. Anal. Appl. {394 (2012), no. 2, 581-591.

P. Lindqvist, On the equation div(vert nabla uvert sp {p-2}nabla u)+lambdavert uvert sp {p-2}u=0, Proc. Amer. Math. Soc. {109 (1990), no. 1, 157-164.

P. Lindqvist, Addendum: {O}n the equation div(vert nabla uvert sp {p-2}nabla u)+lambdavert uvert sp {p-2}u=0 [{P}roc. {A}mer. {M}ath. {S}oc. {109 (1990), no. 1, 157-164; {MR}1007505 (90h:35088)], Proc. Amer. Math. Soc. {116 (1992), no. 2, 583-584.

Y. Shen and J. Zhang, Multiplicity of positive solutions for a semilinear p-Laplacian system with Sobolev critical exponent, Nonlinear Anal. {74 (2011), no. 4, 1019-1030.

H. Wang, Existence and nonexistence of positive radial solutions for quasilinear systems, Discrete Contin. Dyn. Syst., 2009, (Dynamical Systems, Differential Equations and Applications. 7th AIMS Conference, suppl.), 810-817.

Vol 46, No 2 (December 2015)

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2015-12-01

Jak cytować

1.
MACIEJEWSKI, Mateusz. Positive solutions to p-Laplace reaction-diffusion systems with nonpositive right-hand side. Topological Methods in Nonlinear Analysis [online]. 1 grudzień 2015, T. 46, nr 2, s. 731–754. [udostępniono 4.7.2025]. DOI 10.12775/TMNA.2015.065.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 46, No 2 (December 2015)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 374
Liczba cytowań: 2

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa