Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A partial positive solution to a conjecture of Ricceri
  • Home
  • /
  • A partial positive solution to a conjecture of Ricceri
  1. Home /
  2. Archives /
  3. Vol 46, No 1 (September 2015) /
  4. Articles

A partial positive solution to a conjecture of Ricceri

Authors

  • Francisco Javier Garcia-Pacheco
  • Justin R. Hill

DOI:

https://doi.org/10.12775/TMNA.2015.037

Keywords

Anti-proximinal, barrelled, Ricceri

Abstract

In this manuscript we introduce a new class of convex sets called quasi-absolutely convex and show that a Hausdorff locally convex topological vector space satisfies the weak anti-proximinal property if and only if every totally anti-proximinal quasi-absolutely convex subset is not rare. This improves results from \cite{GPtop} and provides a partial positive solution to a Ricceri's Conjectured posed in \cite{R} with many applications to the theory of partial differential equations. We also study the intrinsic structure of totally anti-proximinal convex subsets proving, among other things, that the absolutely convex hull of a linearly bounded totally anti-proximinal convex set must be finitely open. Finally, a new characterization of barrelledness in terms of comparison of norms is provided.
Vol 46, No 1 (September 2015)

Downloads

  • Full Text

Published

2015-09-01

How to Cite

1.
GARCIA-PACHECO, Francisco Javier and HILL, Justin R. A partial positive solution to a conjecture of Ricceri. Topological Methods in Nonlinear Analysis. Online. 1 September 2015. Vol. 46, no. 1, pp. 57 - 67. [Accessed 8 July 2025]. DOI 10.12775/TMNA.2015.037.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 1 (September 2015)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop