Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Optimal regularity of stable manifolds of nonuniformly hyperbolic dynamics
  • Home
  • /
  • Optimal regularity of stable manifolds of nonuniformly hyperbolic dynamics
  1. Home /
  2. Archives /
  3. Vol 38, No 2 (December 2011) /
  4. Articles

Optimal regularity of stable manifolds of nonuniformly hyperbolic dynamics

Authors

  • Luis Barreira
  • Claudià Valls

Keywords

Nonuniform exponential dichotomies, stable manifolds

Abstract

We establish the existence of smooth invariant stable manifolds for differential equations $u'=A(t)u+f(t,u)$ obtained from sufficiently small perturbations of a {\it nonuniform} exponential dichotomy for the linear equation $u'=A(t)u$. One of the main advantages of our work is that the results are optimal, in the sense that the invariant manifolds are of class $C^k$ if the vector field is of class $C^k$. To the best of our knowledge, in the nonuniform setting this is the first general optimal result (for a large family of perturbations and not for some specific perturbations). Furthermore, in contrast to some former works, we do not require a strong nonuniform exponential behavior (we note that contrarily to what happens for autonomous equations, in the nonautonomous case a nonuniform exponential dichotomy need not be strong). The novelty of our proofs, in this setting, is the use of the fiber contraction principle to establish the smoothness of the invariant manifolds. In addition, we can also consider linear perturbations, and our results have thus immediate applications to the robustness of nonuniform exponential dichotomies.

Downloads

  • FULL TEXT

Published

2011-04-23

How to Cite

1.
BARREIRA, Luis and VALLS, Claudià. Optimal regularity of stable manifolds of nonuniformly hyperbolic dynamics. Topological Methods in Nonlinear Analysis. Online. 23 April 2011. Vol. 38, no. 2, pp. 333 - 362. [Accessed 7 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 38, No 2 (December 2011)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop