Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological methods for boundary value problems involving discrete vector $\phi$-Laplacians
  • Home
  • /
  • Topological methods for boundary value problems involving discrete vector $\phi$-Laplacians
  1. Home /
  2. Archives /
  3. Vol 38, No 2 (December 2011) /
  4. Articles

Topological methods for boundary value problems involving discrete vector $\phi$-Laplacians

Authors

  • Cristian Bereanu
  • Dana Gheorghe

Keywords

Boundary value problems, Brouver degree

Abstract

In this paper, using Brouwer degree arguments, we prove some existence results for nonlinear problems of the type $$ -\nabla[\phi(\Delta x_m)]=g_m(x_m,\Delta x_m) \quad (1\leq m\leq n-1), $$ submitted to Dirichlet, Neumann or periodic boundary conditions, where $\phi(x)=|x|^{p-2}x$ $(p> 1)$ or $\phi(x)={x}/{\sqrt{1-|x|^2}}$ and $g_m\colon \mathbb{R}^N\to\mathbb{R}^N$ $(1\leq m\leq n-1)$ are continuous nonlinearities satisfying some additional assumptions.

Downloads

  • FULL TEXT

Published

2011-04-23

How to Cite

1.
BEREANU, Cristian and GHEORGHE, Dana. Topological methods for boundary value problems involving discrete vector $\phi$-Laplacians. Topological Methods in Nonlinear Analysis. Online. 23 April 2011. Vol. 38, no. 2, pp. 265 - 276. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 38, No 2 (December 2011)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop