Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Impulsive problems for fractional evolution equations and optimal controls in infinite dimensional spaces
  • Home
  • /
  • Impulsive problems for fractional evolution equations and optimal controls in infinite dimensional spaces
  1. Home /
  2. Archives /
  3. Vol 38, No 1 (September 2011) /
  4. Articles

Impulsive problems for fractional evolution equations and optimal controls in infinite dimensional spaces

Authors

  • JinRong Wang
  • Yong Zhou
  • Wei Wei

Keywords

Impulsive fractional evolution equations, $PC$-mild solutions, compactness, existence, continuous dependence, optimal controls

Abstract

In this paper, a class of impulsive fractional evolution equations and optimal controls in infinite dimensional spaces is considered. A suitable concept of a $PC$-mild solution is introduced and a suitable operator mapping is also constructed. By using a $PC$-type Ascoli-Arzela theorem, the compactness of the operator mapping is proven. Applying a generalized Gronwall inequality and Leray-Schauder fixed point theorem, the existence and uniqueness of the $PC$-mild solutions is obtained. Existence of optimal pairs for system governed by impulsive fractional evolution equations is also presented. Finally, an example illustrates the applicability of our results.

Downloads

  • FULL TEXT

Published

2011-04-23

How to Cite

1.
WANG, JinRong, ZHOU, Yong and WEI, Wei. Impulsive problems for fractional evolution equations and optimal controls in infinite dimensional spaces. Topological Methods in Nonlinear Analysis. Online. 23 April 2011. Vol. 38, no. 1, pp. 17 - 43. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 38, No 1 (September 2011)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop