Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the spectral flow for paths of essentially hyperbolic bounded operators on Banach spaces
  • Strona domowa
  • /
  • On the spectral flow for paths of essentially hyperbolic bounded operators on Banach spaces
  1. Strona domowa /
  2. Archiwum /
  3. Vol 36, No 2 (December 2010) /
  4. Articles

On the spectral flow for paths of essentially hyperbolic bounded operators on Banach spaces

Autor

  • Daniele Garrisi

Słowa kluczowe

Spectral flow, projectors, hyperplanes

Abstrakt

We give a definition of the spectral flow for paths of bounded essentially hyperbolic operators on a Banach space. The spectral flow induces a group homomorphism on the fundamental group of every connected component of the space of essentially hyperbolic operators. We prove that this homomorphism completes the exact homotopy sequence of a Serre fibration. This allows us to characterise its kernel and image and to produce examples of spaces where it is not injective or not surjective, unlike what happens for Hilbert spaces. For a large class of paths, namely the essentially splitting, the spectral flow of $ A $ coincides with $ -\ind(F_A) $, the Fredholm index of the differential operator $ F_A (u) = u' - A u $.

Pobrania

  • FULL TEXT (English)

Opublikowane

2010-04-23

Jak cytować

1.
GARRISI, Daniele. On the spectral flow for paths of essentially hyperbolic bounded operators on Banach spaces. Topological Methods in Nonlinear Analysis [online]. 23 kwiecień 2010, T. 36, nr 2, s. 353–379. [udostępniono 2.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 36, No 2 (December 2010)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa