Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Sharkovskii's theorem, differential inclusions, and beyond
  • Home
  • /
  • Sharkovskii's theorem, differential inclusions, and beyond
  1. Home /
  2. Archives /
  3. Vol 33, No 1 (March 2009) /
  4. Articles

Sharkovskii's theorem, differential inclusions, and beyond

Authors

  • Jan Andres
  • Tomáš Fürst
  • Karel Pastor

Keywords

Sharkovskiĭ-type theorems, multivalued maps with monotone margins, Poincarĭé translation operators, coexistence of infinitely many periodic solutions, no exceptions, deterministic and random differential inclusions, random periodic solutions

Abstract

We explain why the Poincaré translation operators along the trajectories of upper-Carathéodory differential inclusions do not satisfy the exceptional cases, described in our earlier counter-examples, for upper semicontinuous maps. Such a discussion was stimulated by a recent paper of F. Obersnel and P. Omari, where they show that, for Carathéodory scalar differential equations, the existence of just one subharmonic solution (e.g of order $2$) implies the existence of subharmonics of all orders. We reprove this result alternatively just via a multivalued Poincaré translation operator approach. We also establish its randomized version on the basis of a universal randomization scheme developed recently by the first author.

Downloads

  • FULL TEXT

Published

2009-03-01

How to Cite

1.
ANDRES, Jan, FÜRST, Tomáš and PASTOR, Karel. Sharkovskii’s theorem, differential inclusions, and beyond. Topological Methods in Nonlinear Analysis. Online. 1 March 2009. Vol. 33, no. 1, pp. 149 - 168. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 33, No 1 (March 2009)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop