Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On nonsymmetric theorems for $(H,G)$-coincidences
  • Home
  • /
  • On nonsymmetric theorems for $(H,G)$-coincidences
  1. Home /
  2. Archives /
  3. Vol 33, No 1 (March 2009) /
  4. Articles

On nonsymmetric theorems for $(H,G)$-coincidences

Authors

  • Denise de Mattos
  • Edivaldo L. dos Santos

Keywords

Borsuk-Ulam theorem, ${\Bbb Z}_{p}$-index, $(H, G)$-coincidence, free actions

Abstract

Let $X$ be a compact Hausdorff space, $\varphi\colon X\to S^{n}$ a continuous map into the $n$-sphere $S^n$ that induces a nonzero homomorphism $\varphi^{*}\colon H^{n}(S^{n};{\mathbb Z}_{p})\to H^{n}(X;{\mathbb Z}_{p})$, $Y$ a $k$-dimensional CW-complex and $f\colon X\to Y$ a continuous map. Let $G$ a finite group which acts freely on $S^{n}$. Suppose that $H\subset G$ is a normal cyclic subgroup of a prime order. In this paper, we define and we estimate the cohomological dimension of the set $A_{\varphi}(f,H,G)$ of $(H,G)$-coincidence points of $f$ relative to $\varphi$.

Downloads

  • FULL TEXT

Published

2009-03-01

How to Cite

1.
DE MATTOS, Denise and DOS SANTOS, Edivaldo L. On nonsymmetric theorems for $(H,G)$-coincidences. Topological Methods in Nonlinear Analysis. Online. 1 March 2009. Vol. 33, no. 1, pp. 105 - 119. [Accessed 3 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 33, No 1 (March 2009)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop