Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The numbers of periodic orbits hidden at fixed points of $n$-dimensional holomorphic mappings (II)
  • Home
  • /
  • The numbers of periodic orbits hidden at fixed points of $n$-dimensional holomorphic mappings (II)
  1. Home /
  2. Archives /
  3. Vol 33, No 1 (March 2009) /
  4. Articles

The numbers of periodic orbits hidden at fixed points of $n$-dimensional holomorphic mappings (II)

Authors

  • Guang Yuan Zhang

Keywords

Fixed point index, periodic point

Abstract

Let $\Delta ^{n}$ be the ball $|x|< 1$ in the complex vector space ${\mathbb C} ^{n}$, let $f\colon \Delta ^{n}\rightarrow {\mathbb C}^{n}$ be a holomorphic mapping and let $M$ be a positive integer. Assume that the origin $0=(0,\ldots ,0)$ is an isolated fixed point of both $f$ and the $M$-th iteration $f^{M}$ of $f$. Then the (local) Dold index $P_{M}(f,0)$ at the origin is well defined, which can be interpreted to be the number of periodic points of period $M$ of $f$ hidden at the origin: any holomorphic mapping $f_{1}\colon \Delta ^{n}\rightarrow {\mathbb C}^{n}$ sufficiently close to $f$ has exactly $P_{M}(f,0)$ distinct periodic points of period $M$ near the origin, provided that all the fixed points of $f_{1}^{M}$ near the origin are simple. Therefore, the number ${\mathcal O}_{M}(f,0)=P_{M}(f,0)/M$ can be understood to be the number of periodic orbits of period $M$ hidden at the fixed point. According to Shub-Sullivan [< i> A remark on the Lefschetz fixed point formula for differentiable maps< /i> , Topology < b> 13< /b> (1974), 189–191] and Chow-Mallet-Paret-Yorke [< i> A periodic orbit index which is a bifurcation invariant< /i> , Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 109–131], a necessary condition so that there exists at least one periodic orbit of period $M$ hidden at the fixed point, say, ${\mathcal O}_{M}(f,0)\geq 1$, is that the linear part of $f$ at the origin has a periodic point of period $M$. It is proved by the author in [< i> Fixed point indices and periodic points of holomorphic mappings< /i> , Math. Ann. < b> 337< /b> (2007), 401–433] that the converse holds true. In this paper, we continue to study the number ${\mathcal O}_{M}(f,0)$. We will give a sufficient condition such that ${\mathcal O}_{M}(f,0)\geq 2$, in the case that all eigenvalues of $Df(0)\ $are primitive $m_{1}$-th, $\ldots $, $m_{n}$-th roots of unity, respectively, and $m_{1},\ldots ,m_{n}$ are distinct primes with $M=m_{1}\ldots m_{n}$.

Downloads

  • FULL TEXT

Published

2009-03-01

How to Cite

1.
ZHANG, Guang Yuan. The numbers of periodic orbits hidden at fixed points of $n$-dimensional holomorphic mappings (II). Topological Methods in Nonlinear Analysis. Online. 1 March 2009. Vol. 33, no. 1, pp. 65 - 83. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 33, No 1 (March 2009)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop