Upper semicontinuity of global attractors for the perturbed viscous Cahn-Hilliard equations

Maria B. Kania

DOI: http://dx.doi.org/10.12775/TMNA.2008.051

Abstract


It is known that the semigroup generated by the initial-boundary
value problem for the perturbed viscous Cahn-Hilliard equation with
$\varepsilon> 0$ as a parameter
admits a global attractor $\mathcal{A}_{\varepsilon}$ in the phase
space $X^{{1}/{2}} =(H^2(\Omega)\cap H^{1}_{0}(\Omega))\times L^2(\Omega)$,
$\Omega\subset \mathbb{R}^n$, $n\leq 3$ (see [M. B. Kania,
< i> Global attractor for the perturbed viscous Cahn-Hilliard equation< /i> , Colloq.
Math. < b> 109< /b> (2007), 217-229]). In this paper
we show that the family $\{\mathcal{A}_{\varepsilon}\}_{\varepsilon\in[0,1]}$
is upper semicontinuous at $0$, which means that the Hausdorff semidistance
$$
d_{X^{{1}/{2}}}(\mathcal{A}_{\varepsilon},\mathcal{A}_0)\equiv
\sup_{\psi\in
\mathcal{A}_{\varepsilon}}\inf_{\phi\in\mathcal{A}_{0}}\|
\psi-\phi\|_{X^{{1}/{2}}},
$$
tends to 0 as $\varepsilon\to 0^{+}$.

Keywords


Perturbed viscous Cahn-Hilliard equation; global attractor; upper semicontinuity

Full Text:

FULL TEXT

Refbacks

  • There are currently no refbacks.

Partnerzy platformy czasopism