Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of solutions on compact and non-compact intervals for semilinear impulsive differential inclusions with delay
  • Home
  • /
  • Existence of solutions on compact and non-compact intervals for semilinear impulsive differential inclusions with delay
  1. Home /
  2. Archives /
  3. Vol 32, No 2 (December 2008) /
  4. Articles

Existence of solutions on compact and non-compact intervals for semilinear impulsive differential inclusions with delay

Authors

  • Irene Benedetti
  • Paola Rubbioni

Keywords

Semilinear differential inclusions, impulsive Cauchy problems, delay differential inclusions, mild solutions, condensing multifunctions

Abstract

In this paper we deal with impulsive Cauchy problems in Banach spaces governed by a delay semilinear differential inclusion $y'\in A(t)y$ $ + F(t,y_t)$. The family $\{A(t)\}_{t\in [0,b]}$ of linear operators is supposed to generate an evolution operator and $F$ is a upper Carath\`eodory type multifunction. We first provide the existence of mild solutions on a compact interval and the compactness of the solution set. Then we apply this result to obtain the existence of mild solutions for the impulsive Cauchy problem on non-compact intervals.

Downloads

  • FULL TEXT

Published

2008-12-01

How to Cite

1.
BENEDETTI, Irene and RUBBIONI, Paola. Existence of solutions on compact and non-compact intervals for semilinear impulsive differential inclusions with delay. Topological Methods in Nonlinear Analysis. Online. 1 December 2008. Vol. 32, no. 2, pp. 227 - 245. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 32, No 2 (December 2008)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop