Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Attractors for singularly perturbed damped wave equations on unbounded domains
  • Home
  • /
  • Attractors for singularly perturbed damped wave equations on unbounded domains
  1. Home /
  2. Archives /
  3. Vol 32, No 1 (September 2008) /
  4. Articles

Attractors for singularly perturbed damped wave equations on unbounded domains

Authors

  • Martino Prizzi
  • Krzysztof P. Rybakowski

Keywords

Attractors, singular perturbations, reaction-diffusion equations, damped wave equations

Abstract

For an arbitrary unbounded domain $\Omega\subset\mathbb R^3$ and for $\varepsilon> 0$, we consider the damped hyperbolic equations $$ \varepsilon u_{tt}+ u_t+\beta(x)u- \sum_{ij}(a_{ij}(x) u_{x_j})_{x_i}=f(x,u), \leqno{(\text{\rm H}_\varepsilon)} $$ with Dirichlet boundary condition on $\partial\Omega$, and their singular limit as $\varepsilon\to0$. Under suitable assumptions, (H$_\varepsilon)$ possesses a compact global attractor ${\mathcal A}_\varepsilon$ in $H^1_0(\Omega)\times L^2(\Omega)$, while the limiting parabolic equation possesses a compact global attractor $\widetilde{\mathcal A_0}$ in $H^1_0(\Omega)$, which can be embedded into a compact set ${\Cal A_0}\subset H^1_0(\Omega)\times L^2(\Omega)$. We show that, as $\varepsilon\to0$, the family $({\mathcal A_\varepsilon})_{\varepsilon\in[0,\infty[}$ is upper semicontinuous with respect to the topology of $H^1_0(\Omega)\times H^{-1}(\Omega)$.

Downloads

  • FULL TEXT

Published

2008-09-01

How to Cite

1.
PRIZZI, Martino and RYBAKOWSKI, Krzysztof P. Attractors for singularly perturbed damped wave equations on unbounded domains. Topological Methods in Nonlinear Analysis. Online. 1 September 2008. Vol. 32, no. 1, pp. 1 - 20. [Accessed 7 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 32, No 1 (September 2008)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop