Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Jiang-type theorems for coincidences of maps into homogeneous spaces
  • Strona domowa
  • /
  • Jiang-type theorems for coincidences of maps into homogeneous spaces
  1. Strona domowa /
  2. Archiwum /
  3. Vol 31, No 1 (March 2008) /
  4. Articles

Jiang-type theorems for coincidences of maps into homogeneous spaces

Autor

  • Daniel Vendrúscolo
  • Peter Wong

Słowa kluczowe

Lefschetz coincidence number, Nielsen coincidence number, Reidemeister coincidence number, Jiang-type theorems, homogeneous spaces

Abstrakt

Let $f,g\colon X\to G/K$ be maps from a closed connected orientable manifold $X$ to an orientable coset space $M=G/K$ where $G$ is a compact connected Lie group, $K$ a closed subgroup and $\dim X=\dim M$. In this paper, we show that if $L(f,g)=0$ then $N(f,g)=0$; if $L(f,g)\ne 0$ then $N(f,g)=R(f,g)$ where $L(f,g), N(f,g)$, and $R(f,g)$ denote the Lefschetz, Nielsen, and Reidemeister coincidence numbers of $f$ and $g$, respectively. When $\dim X> \dim M$, we give conditions under which $N(f,g)=0$ implies $f$ and $g$ are deformable to be coincidence free.

Pobrania

  • FULL TEXT (English)

Opublikowane

2008-03-01

Jak cytować

1.
VENDRÚSCOLO, Daniel & WONG, Peter. Jiang-type theorems for coincidences of maps into homogeneous spaces. Topological Methods in Nonlinear Analysis [online]. 1 marzec 2008, T. 31, nr 1, s. 151–160. [udostępniono 7.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 31, No 1 (March 2008)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa