Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Asymptotically critical points and multiple elastic bounce trajectories
  • Home
  • /
  • Asymptotically critical points and multiple elastic bounce trajectories
  1. Home /
  2. Archives /
  3. Vol 30, No 2 (December 2007) /
  4. Articles

Asymptotically critical points and multiple elastic bounce trajectories

Authors

  • Antonio Marino
  • Claudio Saccon

Keywords

Elastic bounce trajectories, asymptotically critical points, Lusternik-Schnirelmann category, $\varphi$-convex functions, $\nabla$-theorems

Abstract

We study multiplicity of elastic bounce trajectories (e.b.t.'s) with fixed end points $A$ and $B$ on a nonconvex "billiard table" $\Omega$. As well known, in general, such trajectories might not exist at all. Assuming the existence of a ``bounce free'' trajectory $\gamma_0$ in $\Omega$ joining $A$ and $B$ we prove the existence of multiple families of e.b.t.'s $\gamma_{\lambda}$ bifurcating from $\gamma_0$ as a suitable parameter $\lambda$ varies. Here $\lambda$ appears in the dynamics equation as a multiplier of the potential term. We use a variational approach and look for solutions as the critical points of the standard Lagrange integrals on the space $X(A,B)$ of curves joining $A$ and $B$. Moreover, we adopt an approximation scheme to obtain the elastic response of the walls as the limit of a sequence of repulsive potentials fields which vanish inside $\Omega$ and get stronger and stronger outside. To overcome the inherent difficulty of distinct solutions for the approximating problems covering to a single solutions to the limit one, we use the notion of ``asymptotically critical points'' (a.c.p.'s) for a sequence of functional. Such a notion behaves much better than the simpler one of ``limit of critical points'' and allows to prove multliplicity theorems in a quite natural way. A remarkable feature of this framework is that, to obtain the e.b.t.'s as a.c.p.'s for the approximating Lagrange integrals, we are lead to consider the $L^2$ metric on $X(A,B)$. So we need to introduce a nonsmooth version of the definition of a.c.p. and prove nonsmooth versions of the multliplicity theorems, in particular of the ``$\nabla$-theorems'' used for the bifurcation result. To this aim we use several results from the theory of $\varphi$-convex functions.

Downloads

  • FULL TEXT

Published

2007-12-01

How to Cite

1.
MARINO, Antonio and SACCON, Claudio. Asymptotically critical points and multiple elastic bounce trajectories. Topological Methods in Nonlinear Analysis. Online. 1 December 2007. Vol. 30, no. 2, pp. 351 - 395. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 30, No 2 (December 2007)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop