Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fixed point theorems and Denjoy-Wolff theorems for Hilbert's projective metric in infinite dimensions
  • Home
  • /
  • Fixed point theorems and Denjoy-Wolff theorems for Hilbert's projective metric in infinite dimensions
  1. Home /
  2. Archives /
  3. Vol 29, No 2 (June 2007) /
  4. Articles

Fixed point theorems and Denjoy-Wolff theorems for Hilbert's projective metric in infinite dimensions

Authors

  • Roger D. Nussbaum

Keywords

Fixed point theorems, Hilbert's projective metric, Denjoy-Wolff theorems

Abstract

Let $K$ be a closed, normal cone with nonempty interior $\inta(K)$ in a Banach space $X$. Let $\Sigma = \{x\in\inta(K) : q(x) = 1\}$ where $q \colon \inta(K)\rightarrow (0,\infty)$ is continuous and homogeneous of degree $1$ and it is usually assumed that $\Sigma$ is bounded in norm. In this framework there is a complete metric $d$, {\it Hilbert's projective metric}, defined on $\Sigma$ and a complete metric $\overline d$, {\it Thompson's metric}, defined on ${\rm \int}(K)$. We study primarily maps $f\colon \Sigma\rightarrow\Sigma$ which are nonexpansive with respect to $d$, but also maps $g \colon {\rm \int}(K)\rightarrow {\rm \int}(K)$ which are nonexpansive with respect to $\overline{d}$. We prove under essentially minimal compactness assumptions, fixed point theorems for $f$ and $g$. We generalize to infinite dimensions results of A. F. Beardon (see also A. Karlsson and G. Noskov) concerning the behaviour of Hilbert's projective metric near $\partial\Sigma := \overline\Sigma \setminus \Sigma$. If $x \in \Sigma$, $f \colon \Sigma\rightarrow \Sigma$ is nonexpansive with respect to Hilbert's projective metric, $f$ has no fixed points on $\Sigma$ and $f$ satisfies certain mild compactness assumptions, we prove that $\omega (x;f)$, the omega limit set of $x$ under $f$ in the norm topology, is contained in $\partial\Sigma$; and there exists $\eta\in\partial\Sigma$, $\eta$ independent of $x$, such that $(1 - t) y + t\eta \in\partial K$ for $0 \leq t \leq 1$ and all $y\in \omega (x;f)$. This generalizes results of Beardon and of Karlsson and Noskov. We give some evidence for the conjecture that $\text{\rm co}(\omega(x;f))$, the convex hull of $\omega(x;f)$, is contained in $\partial K$.

Downloads

  • FULL TEXT

Published

2007-06-01

How to Cite

1.
NUSSBAUM, Roger D. Fixed point theorems and Denjoy-Wolff theorems for Hilbert’s projective metric in infinite dimensions. Topological Methods in Nonlinear Analysis. Online. 1 June 2007. Vol. 29, no. 2, pp. 199 - 249. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 29, No 2 (June 2007)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop