Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Conditional energetic stability of gravity solitary waves in the presence of weak surface tension
  • Home
  • /
  • Conditional energetic stability of gravity solitary waves in the presence of weak surface tension
  1. Home /
  2. Archives /
  3. Vol 25, No 1 (March 2005) /
  4. Articles

Conditional energetic stability of gravity solitary waves in the presence of weak surface tension

Authors

  • Boris Buffoni

Keywords

Capilary-gravity water waves, solitary waves, stability, variational methods

Abstract

For a sequence of values of the total horizontal impulse that converges to $0$, there are solitary waves that minimise the energy in a given neighbourhood of the origin in $W^{2,2}({\mathbb R})$. The problem arises in the framework of the classical Euler equation when a two-dimensional layer of water above an infinite horizontal bottom is considered, at the surface of which solitary waves propagate under the action of gravity and {\it weak} surface tension. The adjective ``weak'' refers to the Bond number, which is assumed to be sub-critical ($< 1/3$). This extends previous results on the conditional energetic stability of solitary waves in the super-critical case, namely those by A. Mielke ([< i> On the energetic stability of solitary water waves< /i> , Philos. Trans. Roy. Soc. London Ser. A < b> 360< /b> (2002), 2337–2358]) and by the author ([< i> Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation< /i> , Arch. Rational Mech. Anal.]). Like in the latter, the method is based on direct minimisation and concentrated compactness, but without relying on "strict sub-additivity", which is still unsettled in the present case. Instead, a complete and careful analysis of minimising sequences is performed that allows us to reach a conclusion, based only on the non-existence of "vanishing" minimising sequences. However, in contrast with [< i> Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation< /i> , Arch. Rational Mech. Anal.], we are unable to prove the existence of minimisers for < i> all< /i> small values of the total horizontal impulse. In fact more is needed to get stability, namely that every minimising sequence has a subsequence that converges to a global minimiser, after possible shifts in the horizontal direction. This will be obtained as a consequence of the analysis of minimising sequences. Then exactly the same argument as in [< i> Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation< /i> , Arch. Rational Mech. Anal.] gives conditional energetic stability and is therefore not repeated.

Downloads

  • FULL TEXT

Published

2005-03-01

How to Cite

1.
BUFFONI, Boris. Conditional energetic stability of gravity solitary waves in the presence of weak surface tension. Topological Methods in Nonlinear Analysis. Online. 1 March 2005. Vol. 25, no. 1, pp. 41 - 68. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 25, No 1 (March 2005)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop