Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A remark on minimal nodal solutions of an elliptic problem in a ball
  • Home
  • /
  • A remark on minimal nodal solutions of an elliptic problem in a ball
  1. Home /
  2. Archives /
  3. Vol 24, No 2 (December 2004) /
  4. Articles

A remark on minimal nodal solutions of an elliptic problem in a ball

Authors

  • Olaf Torné

Keywords

Nodal solutions, Symmetry, Elliptic semilinear equations

Abstract

Consider the equation $-\Delta u = u_{+}^{p-1}-u_{-}^{q-1}$ in the unit ball $B$ with a homogeneous Dirichlet boundary condition. We assume $2< p,q< 2^{*}$. Let $\varphi(u)=(1/2)\int_{B} |\nabla u|^{2} dx-(\1/p)\int_{B}u_{+}^{p}dx -(1/q)\int_{B}u_{-}^{q}dx$ be the functional associated to this equation. The nodal Nehari set is defined by $\mathcal M=\{u\in H^{1}_{0}(B): u_{+}\neq 0,\ u_{-}\neq 0,\ \langle\varphi'(u_{+}),u_{+}\rangle= \langle\varphi'(u_{-}),u_{-}\rangle=0\}$. Now let $\mathcal M_{\text{\rm rad}}$ denote the subset of $\mathcal M$ consisting of radial functions and let $\beta_{\text{\rm rad}}$ be the infimum of $\varphi$ restricted to $\mathcal M_{\text{\rm rad}}$. Furthermore fix two disjoint half balls $B^{+}$ and $B^{-}$ and denote by $\mathcal M_{h}$ the subset of $\mathcal M$ consisting of functions which are positive in $B^{+}$ and negative in $B^{-}$. We denote by $\beta_{h}$ the infimum of $\varphi$ restricted to $\mathcal M_{h}$. In this note we are interested in obtaining inequalities between $\beta_{\text{\rm rad}}$ and $\beta_{h}$. This problem is related to the study of symmetry properties of least energy nodal solutions of the equation under consideration. We also consider the case of the homogeneous Neumann boundary condition.

Downloads

  • FULL TEXT

Published

2004-12-01

How to Cite

1.
TORNÉ, Olaf. A remark on minimal nodal solutions of an elliptic problem in a ball. Topological Methods in Nonlinear Analysis. Online. 1 December 2004. Vol. 24, no. 2, pp. 199 - 207. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 24, No 2 (December 2004)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop