Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence and multiplicity results for wave equations with time-independent nonlinearity
  • Home
  • /
  • Existence and multiplicity results for wave equations with time-independent nonlinearity
  1. Home /
  2. Archives /
  3. Vol 22, No 2 (December 2003) /
  4. Articles

Existence and multiplicity results for wave equations with time-independent nonlinearity

Authors

  • Juha Berkovits
  • Herbert Leinfelder
  • Vesa Mustonen

Keywords

Wave equation, multiple solutions, degree theory, free vibrations

Abstract

We shall study the existence of time-periodic solutions for a semilinear wave equation with a given time-independent nonlinear perturbation and small forcing. Since the distribution of eigenvalues of the linear part varies with the period, the solvability of the problem depends essentially on the frequency. The main idea of this paper is to consider the situation where the period is not prescribed and hence treated as a parameter. The description of the distribution of eigenvalues as a function of the period enables us to show that under certain conditions the interaction between the nonlinearity and the spectrum of the wave operator induces multiple solutions. Our basic new result states that the autonomous equation admits at least two nontrivial solutions (free vibrations) for a restricted (but infinite) set of periods such that the nonlinearity interacts with one simple eigenvalue. As a corollary we prove that the semilinear wave equation with time-independent nonlinearity and small forcing admits an infinite sequence of pairs of periodic solutions with corresponding period tending to zero. The results are obtained via generalized topological degree theory.

Downloads

  • FULL TEXT

Published

2003-12-01

How to Cite

1.
BERKOVITS, Juha, LEINFELDER, Herbert and MUSTONEN, Vesa. Existence and multiplicity results for wave equations with time-independent nonlinearity. Topological Methods in Nonlinear Analysis. Online. 1 December 2003. Vol. 22, no. 2, pp. 273 - 295. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 22, No 2 (December 2003)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop